| *                                                | ****                                     | Transeuro<br>Opera fir<br>attraverso                           | opäischen Verkehrs<br>nanziata con la pa<br>p il bilancio delle ret | netze finanziertes Vo<br>rtecipazione dell'Unio<br>i di trasporto transeur | rhaben<br>one Europea<br>opee           |                                    |                                                             |                                                    |  |  |
|--------------------------------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--|--|
| Au:<br>B<br>Det                                  | sbau<br>RE                               | Eisenbahn<br>NNER<br>nung                                      | achse Münc<br>BASIS                                                 | hen-Verona<br>STUNNE                                                       | EL                                      |                                    | Gallerie di Bese dei Bre<br>Brenner Baoletunnei Bi          |                                                    |  |  |
| Pot<br><b>G</b>                                  | tenzia<br>AL                             | mento ass                                                      | e ferroviario<br>DI BA                                              | Monaco - Vei<br>SE DEL                                                     | rona<br>. BRENN                         | NERO                               |                                                             |                                                    |  |  |
| Pro<br>H61 Baulo                                 | ogetta                                   | zione di de                                                    | ettaglio                                                            |                                                                            | H61 Lotto Mul                           | es 2-3                             |                                                             |                                                    |  |  |
| Projektojn                                       | hoit                                     |                                                                |                                                                     |                                                                            | W/DS                                    |                                    |                                                             |                                                    |  |  |
| 300                                              | nen                                      |                                                                |                                                                     |                                                                            | 300                                     |                                    |                                                             |                                                    |  |  |
| Dokumentenart                                    |                                          |                                                                |                                                                     |                                                                            |                                         | to                                 |                                                             |                                                    |  |  |
| Tochr                                            | niecł                                    | har Bari                                                       | cht                                                                 |                                                                            | Relazio                                 | no tocn                            | ica                                                         |                                                    |  |  |
| TECH                                             | 11301                                    |                                                                | GIIL                                                                |                                                                            | TICIALIO                                |                                    | ica                                                         |                                                    |  |  |
| Nach                                             | woie                                     | dor St                                                         | andfoctial                                                          | coit und                                                                   | Vorifica                                |                                    |                                                             |                                                    |  |  |
|                                                  |                                          |                                                                | andrestigi                                                          |                                                                            |                                         |                                    |                                                             |                                                    |  |  |
| Hinte                                            | rrigg                                    | ler                                                            |                                                                     |                                                                            | Hinterri                                | gger                               |                                                             |                                                    |  |  |
| Consorzio                                        | BTC So                                   | erl                                                            |                                                                     |                                                                            | Mandataria                              |                                    | Mandanti                                                    |                                                    |  |  |
|                                                  | -                                        |                                                                | BRENN<br>TUNNE                                                      | ERO<br>L                                                                   | Partecip<br>Italia                      | azioni                             | <b>O</b> Ghell                                              | a                                                  |  |  |
|                                                  | and the                                  |                                                                | PARTECIPAZIONI ITAL                                                 | RUCTION<br>JA - GHELLA - PMC- COGEIS                                       |                                         |                                    | COGEIS                                                      |                                                    |  |  |
|                                                  |                                          | cutiva<br>)<br>aggruppamento 1<br>Profer S.J., Vie G.B. Server | <b>Temporaneo di Impr</b><br>artin 8, 20125 Mano, Tat. • 30 026     | <b>956 4P</b><br>787911, Fac: +30 0287152612                               | Progettazione                           | di dettaglio                       | RDINE DEGLI<br>ELLA PAOV.<br>otterig. PAO<br>ISCRIZIONE ALE | LO CUCI<br>Nº 2216                                 |  |  |
| pini                                             | Swiss                                    | RO<br>ER<br>atto<br>thrutture<br>ono s.r.l                     |                                                                     |                                                                            | Partecip<br>Italia<br>Oghell            | azioni                             | Cucin<br>10.04<br>08:08<br>GMT-                             | o Paolo<br>.2024<br>:36<br>⊦01:00                  |  |  |
| engi                                             | neers                                    | 9                                                              | Dati                                                                | um / Data                                                                  | Name                                    | Nome                               | Gesellsch                                                   | aft / Società                                      |  |  |
| Bearbeite                                        | t / Elabo                                | orato                                                          | 10.                                                                 | 04.2024                                                                    | BOF                                     | RGIA                               | S                                                           | WS                                                 |  |  |
| Genehmig                                         | yenncat<br>gt / Appi                     | rovato                                                         | 10.                                                                 | 04.2024                                                                    | BAL                                     | IANI                               | B                                                           | TC                                                 |  |  |
|                                                  | Galle<br>Brenn                           | oria di Base<br>ner Basistu                                    | BT<br>del Brennero<br>nnel BBT SE                                   |                                                                            | ÖBA<br>Direttore<br>Ing. Marce          | Leiter<br>dei Lavori<br>o Loffredo | Vor<br>Ammir<br>Ing. Gilbe<br>Ing. Martir                   | stand<br>histratori<br>rto Cardola<br>h Gradnitzer |  |  |
| Projekt-<br>ilometer /<br>Chilometro<br>progetto | von /<br>da<br>bis /<br>a<br>bei /<br>al | 32.0+88<br>54.0+15                                             | Bau-<br>kilometer /<br>Chilometro<br>opera                          | von / da<br>bis / a<br>bei / al                                            | Status Dokument /<br>Stato<br>documento |                                    | Massstab / Scala<br>-                                       |                                                    |  |  |
| Staat                                            |                                          | Los<br>Lotto                                                   | Einheit<br>Unitá                                                    | Nummer<br>Numero                                                           | Dokumentenart<br>Tipo documento         | Vertrag<br>Contratto               | Nummer<br>Codice                                            | Revision<br>Revisione                              |  |  |
| Stato                                            |                                          |                                                                |                                                                     |                                                                            |                                         |                                    |                                                             |                                                    |  |  |

| Bearbeitungsstand<br>Stato di elaborazione                           |                                                                    |     |            |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------|-----|------------|--|--|--|--|
| RevisionRevisionRevisionRevisionRevisioneRevisioneRevisioneRevisione |                                                                    |     |            |  |  |  |  |
| 00                                                                   | Abgabe / Emissione                                                 | BTC | 07.02.2023 |  |  |  |  |
| 01                                                                   | Kommentare und Änderungswünsche / Commenti e richieste di modifica | BTC | 10.04.2024 |  |  |  |  |
|                                                                      |                                                                    |     |            |  |  |  |  |

| 1 | EINLEITUNG                                                       | 6        |
|---|------------------------------------------------------------------|----------|
| 1 | INTRODUZIONE                                                     | 6        |
| 2 | GEGENSTAND UND ZIEL                                              | 7        |
| 2 | OGGETTO E SCOPO                                                  | 7        |
| 3 | BESCHREIBUNG DER DEPONIE UND DER VORGESEHENEN BAUWERKE           | 8        |
| 3 | DESCRIZIONE DEL DEPOSITO E DELLE OPERE PREVISTE                  |          |
| Č | 3.1 BESCHREIBUNG DES SACHVERHALTS.                               |          |
|   | 3.1 DESCRIZIONE DELLO STATO DI FATTO                             | 8        |
|   | 3.2 BESTEHENDE INFRASTRUKTUREN                                   | 8        |
|   | 3.2 INFRASTRUTTURE ESISTENTI                                     | 8        |
|   | 3.3 PROVISORISCHE UNTERKUNFT                                     | 9        |
|   | 3.3 SISTEMAZIONE PROVVISORIA                                     | 9        |
|   | 3.4 ENDGULTIGE ANORDNUNG                                         |          |
|   | 3.4 SISTEMAZIONE DEFINITIVA                                      |          |
| 4 | GEOLOGISCHER, HYDROGEOLOGISCHER UND GEOMORPHOLOGISCHER ÜBERBLICK | 12       |
| 4 | INQUADRAMENTO GEOLOGICO, IDROGEOLOGICO E GEOMORFOLOGICO          | 12       |
| 5 | GEOTECHNISCHE CHARAKTERISIERUNG                                  | 13       |
| 5 | CARATTERIZZAZIONE GEOTECNICA                                     | 13       |
|   | 5.1 VERFÜGBARE UNTERSUCHUNGEN                                    |          |
|   | 5.1 INDAGINI DISPONIBILI                                         |          |
|   | 5.1.1 Umfragen                                                   |          |
|   | 5.1.1 Sondaggi                                                   |          |
|   | 5.1.2 Seismische Untersuchungen                                  |          |
|   | 5.1.2 Indagini sisinche                                          |          |
|   | 5.1.3 Prove di laboratorio                                       |          |
|   | 5.1.4 Infiltrometrische Tests                                    |          |
|   | 5.1.4 Prove infiltrometriche                                     |          |
|   | 5.2 ORT DER UNTERSUCHUNGEN                                       |          |
|   | 5.2 UBICAZIONE DELLE INDAGINI                                    |          |
|   | 5.3 DEFINITION DER BEZUGSTRATIGRAPHIE                            |          |
|   | 5.3 DEFINIZIONE DELLA STRATIGRAFIA DI RIFERIMENTO                |          |
|   | 5.4 GRUNDWASSERSPIEGEL                                           |          |
|   | 5.4 ANDAMENTO DELLA FALDA                                        |          |
|   | 5.5 MATERIAL GELAGERT IN DEN EHEMALIGEN GRUBEN                   |          |
|   | 5.5 MATERIALI DI RIEMPIMENTO STOCCATI NELLE EX-CAVE              |          |
|   |                                                                  | 23<br>22 |
|   | 5.6 1 BH1-I Imfrageergebnisse                                    | 23       |
|   | 5.6.1 Bisultati sondaggio BH1                                    |          |
|   | 5.6.2 BH2-Umfrageergebnisse                                      |          |
|   | 5.6.2 Risultati sondaggio BH2                                    |          |
|   | 5.7 BERECHNUNGSPARAMETER                                         |          |
|   | 5.7 PARAMETRI DI CALCOLO TERRENO DI FONDAZIONE                   | 27       |
| 6 | PLANUNGSKRITERIEN NACH GRENZZUSTÄNDEN                            |          |
| 6 | CRITERI DI PROGETTAZIONE AGLI STATI LIMITE                       |          |
|   | 6.1 SICHERHEITSNACHWEISE IM STATISCHEN BEREICH                   |          |

|   | 6.1 VERIFICHE DI SICUREZZA IN CAMPO STATICO                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|   | 6.1.1 Grenzzustand der Gebrauchstauglichkeit (GZG)                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                   |
|   | 6.1.1 Stati limite di esercizio (SLE)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                   |
|   | 6.1.2 Grenzzustand der Tragfähigkeit (GZT)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                   |
|   | 6.1.2 Stati limite ultimi (SLU)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                   |
|   | 6.2 SICHERHEITSNACHWEISE IM SEISMISCHEN BEREICH                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                   |
|   | 6.2 VERIFICHE DI SICUREZZA IN CAMPO SISMICO                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                   |
|   | 6.2.1 Bezugsgrenzzustände für Nachweise bei Erdbebeneinwirkung                                                                                                                                                                                                                                                                                                                                                                                                               | 32                   |
|   | 6.2.1 Stati limite di riferimento per le verifiche sismiche                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                   |
|   | 6.2.2 Grenzzustand der Gebrauchstauglichkeit (GZG)                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                   |
|   | 6.2.2 Stati limite di esercizio (SLE)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                   |
|   | 6.2.3 Grenzzustand der Tragfähigkeit (GZT)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                   |
|   | 6.2.3 Stati limite ultimi (SLU)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                   |
|   | 6.3 BEMESSUNGSWERTE DER BEANSPRUCHUNG                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|   | 6.3 AZIONI DI PROGETTO                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                   |
| ' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| 7 | GEOMETRIA DEI MODELLI                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                   |
|   | 7.1 MODEL SCHNITT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|   | 7.1 MODELLO SEZIONE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|   | 7.2 MODEL SCHNITT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                   |
|   | 7.2 MODELLO SEZIONE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                   |
|   | 7.3 MODEL SCHNITT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                   |
|   | 7.3 MODELLO SEZIONE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                   |
| 8 | NACHWEIS DER GRENZZUSTÄNDE DER TRAGFÄHIGKEIT UND GEBRAUCHS                                                                                                                                                                                                                                                                                                                                                                                                                   | 44                   |
| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|   | 8.1 ANALYSE DER ERGEBNISSE IN BEZUG AUF DIE EINSCHRANKUNGSZUSTANDE                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|   | 8.1 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE DI ESERCIZIO                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|   | 8.1.1 Ergebnisse des Schnitts 1                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|   | 8.1.1 Risultati sezione 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|   | 8.1.2 Ergebnisse des Schnitts 2                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|   | 8.1.2 Risultati sezione 2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                   |
|   | 8.1.3 Ergebnisse des Schnitts 3                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|   | 8.1.3 Risultati sezione 3                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|   | 8.1.4 Analyse Auswirkungen auf die Vorfertigungsanlage der Segmente und relativen Quadrats                                                                                                                                                                                                                                                                                                                                                                                   | 51                   |
|   | 8.1.4 Analisi degli effetti indotti sull'impianto di prefabbricazione dei conci e relativo piazzale                                                                                                                                                                                                                                                                                                                                                                          | 51                   |
|   | 8.1.5 Analyse der Auswirkungen auf bestehende Gebäude (Maso Sossai)                                                                                                                                                                                                                                                                                                                                                                                                          | 57                   |
|   | 8.1.5 Analisi degli effetti indotti sugli edifici esistenti (Maso Sossai)                                                                                                                                                                                                                                                                                                                                                                                                    | 57                   |
|   | 8.2 ANALYSE DER ERGEBNISSE FUR DIE LETZTEN GRENZSTAATEN                                                                                                                                                                                                                                                                                                                                                                                                                      | 64                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|   | 8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                   |
|   | 8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI                                                                                                                                                                                                                                                                                                                                                                                                                  | 64<br>64             |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> </ul>                                                                                                                                                                                                                                                                                                                             | 64<br>64<br>64       |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> </ul>                                                                                                                                                                                                                                                                                               | 64<br>64<br>64<br>68 |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> </ul>                                                                                                                                                                                                                                                            |                      |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> <li>8.2.3 Ergebnisteil 3</li> </ul>                                                                                                                                                                                                                              |                      |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> <li>8.2.3 Ergebnisteil 3</li> <li>8.2.3 Risultati sezione 3</li> </ul>                                                                                                                                                                                           |                      |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> <li>8.2.3 Ergebnisteil 3</li> <li>8.2.3 Risultati sezione 3</li> <li>8.3 BELASTUNGEN AUS EINEM HOCHWASSER MIT EINER WIEDERKEHRPERIODE VON</li> </ul>                                                                                                                  |                      |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> <li>8.2.3 Ergebnisteil 3</li> <li>8.2.3 Risultati sezione 3</li> <li>8.3 BELASTUNGEN AUS EINEM HOCHWASSER MIT EINER WIEDERKEHRPERIODE VON</li> </ul>                                                                                                             |                      |
|   | <ul> <li>8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI</li> <li>8.2.1 Ergebnisteil 1</li> <li>8.2.1 Risultati sezione 1</li> <li>8.2.2 Ergebnisteil 2</li> <li>8.2.2 Risultati sezione 2</li> <li>8.2.3 Ergebnisteil 3</li> <li>8.2.3 Risultati sezione 3</li> <li>8.3 BELASTUNGEN AUS EINEM HOCHWASSER MIT EINER WIEDERKEHRPERIODE VON</li> <li>150 JAHREN</li> <li>8.3 CONDIZIONI DI STABILITÀ DEL DEPOSITO IN CASO DI PIENA CON TEMPO DI RITORNO</li> </ul> |                      |

| 9   | BEWEISSICHERUNGSPLAN                                      | 78       |
|-----|-----------------------------------------------------------|----------|
| 9   | PIANO DI MONITORAGGIO                                     | 78       |
|     | 9.1 ALLGEMEINE KRITERIEN                                  |          |
|     | 9.1 CRITERI GENERALI                                      |          |
|     | 9.2 FESTLEGUNG UBERWACHUNGSSCHWELLEN                      | 80       |
|     | 9.2 DEFINIZIONE SOGLIE DI MONTI ORAGGIO                   | 80<br>81 |
|     | 9.3 CABATTERISTICHE STRUMENTAZIONE                        |          |
|     | 9.3.1 Inklinometer                                        |          |
|     | 9.3.1 Inclinometri                                        | 81       |
|     | 9.4 REFERENZDOKUMENTE                                     |          |
|     | 9.4 DOCUMENTI DI RIFERIMENTO                              |          |
|     | Executive-Projekt                                         | 83<br>20 |
|     | Detailliertes Executive-Projekt                           |          |
|     | Progetto Esecutivo di Dettaglio                           |          |
| 10  | ) LISTE DER ANHÄNGE                                       |          |
| 10  | ) LISTA DELLE APPENDICI                                   |          |
| ANI | NHANG 1 - IN-SITU-TESTS                                   |          |
| API | PPENDICE 1 – PROVE IN SITU                                | 85       |
| ANI | NHANG 2 - LABORTESTS                                      | 117      |
| API | PPENDICE 2 – PROVE DI LABORATORIO                         | 117      |
| ANI | NHANG 3 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 1     |          |
| API | PPENDICE 3 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 1 |          |
| ANI | NHANG 4 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 2     | 223      |
| API | PPENDICE 4 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 2 | 223      |
| ANI | NHANG 5 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 3     | 316      |
| API | PPENDICE 5 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 3 | 316      |
| ANI | NHANG 6 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 1     |          |
| API | PPENDICE 6 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 1 |          |
| ANI | NHANG 7 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 1          | 523      |
| API | PPENDICE 7 – RISULTATI ANALISI SLIDE SLU – SEZIONE 1      | 523      |
| ANI | NHANG 8 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 1          | 542      |
| API | PPENDICE 8 – RISULTATI ANALISI SLIDE SLV – SEZIONE 1      | 542      |
| ANI | NHANG 9 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 2     | 561      |
| API | PPENDICE 9 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 2 | 561      |
| ANI | NHANG 10 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 2         | 676      |
| API | PPENDICE 10 – RISULTATI ANALISI SLIDE SLU – SEZIONE 2     | 676      |
| ANI | NHANG 11 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 2         | 697      |
| AP  | PPENDICE 11 – RISULTATI ANALISI SLIDE SLV – SEZIONE 2     | 697      |

| ANHANG 12 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 3               | 718 |
|-----------------------------------------------------------------------|-----|
| APPENDICE 12 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 3           | 718 |
| ANHANG 13 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 3                    | 832 |
| APPENDICE 13 – RISULTATI ANALISI SLIDE SLU – SEZIONE 3                | 832 |
| ANHANG 14 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 3                    | 854 |
| APPENDICE 14 – RISULTATI ANALISI SLIDE SLV – SEZIONE 3                | 854 |
| ANHANG 15 – ERGEBNISSE DER SLIDE SLU "PIENA" – ABSCHNITT 3            | 876 |
| APPENDICE 15 – RISULTATI ANALISI SLIDE SLU "PIENA" – SEZIONE 3        | 876 |
| ANHANG 16 – ERGEBNISSE DER SLIDE SLU "SVASO RAPIDO" – ABSCHNITT 3     | 898 |
| APPENDICE 16 – RISULTATI ANALISI SLIDE SLU "SVASO RAPIDO" – SEZIONE 3 | 898 |

# 1 EINLEITUNG

Für die Errichtung des Brennerbasistunnels sind auf italienischem Staatsgebiet zwei Deponien vorgesehen, um das Ausbruchsmaterial. Es handelt sich um die Materialdeponie Genauen 2 und um die Materialdeponie Hinterrigger, der Gegenstand des vorliegenden Berichts ist.

Mit Bezug zu den Planunterlagen der Deponien wurden unterschiedliche Gebrauchsklassen des Materials, das vom Ausbruch der Stollen und der beiden Haupttunnel des Brennerbasistunnels stammen, sowie aus den Verbindungstunnels und den Kavernen: (1) Klasse A, bestehend aus Material hochwertiger Qualität, geeignet für Zuschlagstoffe; (2) Klasse B, bestehend aus Material geeignet für Aufschüttungen oder Verfüllungen; (3) Klasse C bestehend aus Material, das somit definitiv gelagert wird.

Unter Berücksichtigung der filigranen Morphologie des Eisacktals und der Problematik, ausreichend voluminöse Speicherflächen zu schaffen, wurde besonderes Augenmerk darauf gelegt, die Lagerstätten selbst so zu dimensionieren und zu modellieren, dass sie sich bestmöglich in die bestehende Landschaft einfügen.

Dieser Bericht berichtet über die Ergebnisse der geotechnischen Studien. für ausführende die die Neugestaltung der teen Lagerstätte bei Hinterrigger durchgeführt Charaktedes Baugrundes und den dazu durchgeführten Untersuchungen wird auf das Dokument 02 H61 DB 300 KTB B0130 51055 verwiesen.

Um das Lesen des Dokuments zu erleichtern, enthält es die folgenden 5 Anhänge verschiedenen Kapiteln des Berichts Bezug genommen wird:

- Anhang 1, der die Ergebnisse der Untersuchungen enthält, die die Lagerstätte besteht (Bohrungen und zugehörige Stratigraphie, seismische Refraktionsuntersuchung).
- Anhang 2, der die Ergebnisse der Laboruntersuchungen enthält, die an den Proben durchgeführt wurden, die bei den in Anhang 1 aufgeführten Erhebungen entnommen wurden;
- Anlagen 3, 4 und 5, die die Ergebnisse der mit der Finite-Elemente-Methode

Auch ein Sammel- und Entsorgungssystem für das Oberflächenwasser der Deponie ist vorgesehen, dessen Dimensionierung dem Regenwasserentsorgungsbericht 02\_H61\_DB\_300\_KTB\_B0130\_51054 zu entnehmen ist.

# 1 INTRODUZIONE

Per la realizzazione della Galleria di Base del Brennero, sul territorio italiano sono previsti due depositi per collocare, sia provvisoriamente sia definitivamente, lo smarino proveniente dagli scavi; si tratta del deposito di Genauen 2 e del deposito di Hinterrigger, questo oggetto della presente relazione.

Con riferimento agli elaborati grafici dei depositi, sono state distinte le seguenti classi di utilizzo del materiale proveniente dagli scavi del cunicolo di servizio e delle due canne principali della Galleria di Base del Brennero, comprese le interconnessioni e i cameroni: (1) classe A, costituita da materiale di alta qualità, idoneo per inerti; (2) classe B, costituita da materiale idoneo per riporti o riempimenti; (3) classe C costituita da materiale non riutilizzabile e destinato a deposito in via definitiva.

Tenendo conto della delicata morfologia presente in Val d'Isarco e della problematica di realizzare aree di deposito sufficientemente voluminose, si è posta particolare attenzione nel dimensionare e modellare i depositi stessi in modo tale da inserirli nel miglior modo possibile nel paesaggio esistente.

La presente relazione riporta le risultanze degli studi geotecnici effettuati per la riprogettazione esecutiva del deposito in fase provvisoria e definitiva di Hinterrigger. Per la caratterizzazione geotecnica del terreno di fondazione e le relative indagini effettuate si rimanda al documento 02 H61 DB 300 KTB B0130 51055.

Per facilità di consultazione del documento, lo stesso comprende le appendici 1 e 2 gli output di calcolo (Appendice 3 – 14) sono riportati come allegati:

- Appendice 1 che contiene i risultati delle indagini effettuate per caratterizzare il materiale costituente il deposito (sondaggi e relative stratigrafie, indagine sismica a rifrazione).
- Appendice 2 che contiene i risultati delle prove di laboratorio effettuate sui campioni prelevati nei sondaggi riportati in Appendice 1;
- Appendici 3 14, riportano i dati di Input ed i risultati delle analisi numeriche agli elementi finiti e le analisi all'euilibrio limite effettuate per la verifica del deposito.

È inoltre previsto un sistema di raccolta e smaltimento delle acque superficiali del deposito, per il cui dimensionamento si rimanda alla relazione di smaltimento acque meteoriche 02\_H61\_DB\_300\_KTB\_B0130\_51054.

# 2 GEGENSTAND UND ZIEL

Der vorliegende Bericht behandelt die Materialdeponie für Ausbruchmaterial Hinterrigger, die sich auf dem orographischen Rechten des Eisacks befindet und im Norden, Osten und Süden vom Fluss bogenförmig begrenzt ist. Im Westen erhebt sich eine einige Zehnermeter hohe Felswand bis zur Forch Terrasse. Vor allem im Süden, wo die Felswand fast senkrecht ist, besteht ein großes Steinschlagrisiko.

Ziel dieses Berichtes ist die Wiedergabe der Ergebnisse der Standsicherheitsnachweise und der Setzungsanalysen, die sich durch die Errichtung der Deponie zeigen können, und ihrer Auswirkungen auf die angrenzenden Strukturen und Infrastrukturen mit besonderem Hinblick auf die beiden Hochspannungslinien in der Nähe der Deponie. Dabei werden alle verfügbaren geotechnischen Untersuchungen überprüft, die Projektstratigraphie definiert und der Baugrund sowie das ganze Material, das deponiert wird, aus geotechnischer Sicht charakterisiert.

# 2 OGGETTO E SCOPO

La presente relazione ha per oggetto il deposito dello smarino di Hinterrigger, situato sulla sponda orografica destra dell'Isarco e delimitato, a forma di arco, a nord, est e sud dal fiume. A ovest, una parete rocciosa alta decine di metri si staglia fino alla terrazza di Forch. Soprattutto a sud, dove la parete rocciosa è quasi verticale, c'è un elevato rischio di caduta massi.

Lo scopo della relazione è quello - dopo avere effettuato una revisione delle indagini geotecniche attualmente disponibili ed avere definito una stratigrafia di progetto ed una caratterizzazione geotecnica dei terreni di fondazione e dei materiali che costituiranno il deposito - di riportare i risultati delle verifiche di stabilità e delle analisi dei cedimenti indotti dalla realizzazione del deposito.

# 3 BESCHREIBUNG DER DEPONIE UND DER 3 VORGESEHENEN BAUWERKE

# 3.1 BESCHREIBUNG DES SACHVERHALTS

Das Areal der Materialdeponie Hinterrigger liegt im Riggertal auf der orographischen Rechten des Eisacks. Das Gelände befindet sich im Gemeindegebiet von Vahrn, circa auf Höhe der Autobahnausfahrt A22 "Brixen-Vahrn".

# B DESCRIZIONE DEL DEPOSITO E DELLE OPERE PREVISTE

# 3.1 DESCRIZIONE DELLO STATO DI FATTO

L'area del deposito Hinterrigger è situata nella val di Riga sul lato orografico destro dell'Isarco. L'area è nel territorio comunale di Varna, circa all'altezza dell'uscita dell'autostrada A22 "Bressanone-Varna".



Abbildung 1: Lageplan Hinterrigger Zustand

Figura 1. Planimetria deposito Hinterrigger, stato di fatto

# 3.2 BESTEHENDE INFRASTRUKTUREN

Anschließend führt man eine Zusammenfassung der bestehenden Interferenzen im Bereich der Materialdeponie:

- Grundwassermessstellen
- Sossai-Farm
- Wasserleitung [HR-V-1]
- RFI 132 kV Stromleitung

(das Spalier wird außerhalb der Grenzen der neu gestalteten Lagerstätte platziert, daher stört es den Stapel nicht)

# 3.2 INFRASTRUTTURE ESISTENTI

Di seguito si dà un riepilogo delle interferenze esistenti nella zona del deposito:

- Piezometri di misura della falda
- Maso Sossai
- Tubazioni acquedotto non potabile [HR-V-1]
- Linea elettrica da 132kV della RFI

(il traliccio è posizionato al di fuori dei limiti del deposito riprogettato, pertanto non interferisce con il cumulo)

#### 3.3 PROVISORISCHE UNTERKUNFT

Als Vorbau ist in den Randbereichen eine Aufschüttung vorgesehen, innerhalb derer das Material dann sukzessive in max. 60 cm dick. Die Behelfsflächen sind mit einem solchen Gefälle herzustellen, dass Oberflächenwasser abfließen und in einem provisorischen Absetzbecken anlaufen kann. Der Damm wird unter anderem die Funktion eines Sicht- und Lärmschutzes haben.

#### Störung provisorische Unterkunft

Das Material wird vorübergehend in der Hinterigger platziert, unter Berücksichtigung der Anwesenheit des Implantats von Vorfertigung der Segmente, die für die gesamte Dauer der Arbeiten Teil der Fläche festgelegt ist.

# 3.3 SISTEMAZIONE PROVVISORIA

È stato realizzato preliminarmente nelle zone marginali un argine, all'interno del quale il materiale è stato sistemato in strati successivi di max. 60cm di spessore. Le superfici provvisorie dovranno essere realizzate con un'inclinazione tale da permettere lo scorrimento delle acque. Il terrapieno avrà tra l'altro la funzione di barriera paravista e antirumore.

#### Interferenze sistemazione provvisoria

Il materiale verrà sistemato provvisoriamente nell'area di Hinterigger, tenendo conto della presenza dell'impianto di prefabbricazione dei conci che occupa per l'intera durata dei lavori una parte significativa dell'area in oggetto.



Abbildung 2: Lageplan Hinterrigger maximale Füllphase

Figura 2. Planimetria deposito Hinterrigger, fase provvisoria di massimo riempimento

# 3.4 ENDGÜLTIGE ANORDNUNG

Nach der Anordnung des Materials werden die Lagerfläche der Tübbinge und das Fertigteilwerk abgebaut.

Sobald die Halde während der Auffüllphase erreicht ist, wird sie von allen Unebenheiten im Boden angemessen eingeebnet, um das erforderliche Gefälle zu erhalten.

Die endgültige Geometrie des Modells in der vorläufigen Phase ist bis auf die hydraulische Anordnung zur Regulierung des Regenwassers identisch mit der endgültigen.

# Endgeometrie der Lagerstätte

#### 3.4 SISTEMAZIONE DEFINITIVA

Finita la sistemazione del materiale, l'area di stoccaggio dei conci e l'impianto di prefabbricazione saranno smantellati.

Il cumulo, una volta raggiunta la quota finale in fase di riempimento, verrà adeguatamente livellato da eventuali irregolarità del terreno per ottenere la pendenza necessaria.

La geometria finale del modello in fase provvisoria è identica a quella definitiva, a meno della sistemazione idraulica per la regimentazione delle acque piovane.

| Dati gometrici del cumulo di Progetto /<br>Geometrische Daten der Projektakkumulation |            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Area di deposito proiettato (m <sup>2</sup> ) /                                       | 101.200    |  |  |  |  |  |  |
| Volume di deposito (m <sup>3</sup> ) /<br>Speichervolumen (m3)                        | 4.884.862  |  |  |  |  |  |  |
| Lunghezza max (m) /<br>Maximale Länge (m)                                             | 456.48     |  |  |  |  |  |  |
| Larghezza max (m) /<br>Maximale Breite (m)                                            | 355.05     |  |  |  |  |  |  |
| Altezza max (m) /<br>Maximale Höhe (m)                                                | 716.71     |  |  |  |  |  |  |
| Pendenza superficiale (long) /<br>Oberflächenneigung (lang)                           | 1V / 150H  |  |  |  |  |  |  |
| Pendenza superficiale (trasv) /<br>Oberflächenneigung (quer)                          | 1V / 150H  |  |  |  |  |  |  |
| Pendenza scarpata /<br>Steilhang                                                      | 1V / 1.33H |  |  |  |  |  |  |

Geometria finale del deposito

Das Material auf den Böschungen wird durch ein Oberflächenabflussnetz geschützt, das in der Endphase installiert wird und das den Abtransport des Wassers von der Halde durch Kanäle und Rohre bis zum Absetzbecken und schließlich in seinen endgültigen Vorfluter Eisack ermöglicht.

Änderungen am Pfahl und seiner Geometrie sind sicherheitshalber zu berücksichtigen, wenn sie auf eine geringere Materialmenge zurückzuführen sind. Jede Erhöhung der im Projekt vorgesehenen Endmenge muss im Hinblick auf die Überprüfung der globalen Stabilität der Akkumulation selbst bewertet werden. Il materiale sulle scarpate sarà protetto da una rete di deflusso superficiale, messa in opera in fase finale, e che permetterà l'allontanamento delle acque dal cumulo attraverso canali e tubazioni, e di avviarle in una vasca di sedimentazione ed infine nel suo recettore finale Fiume Isarco.

Eventuali modifiche del cumulo e della sua geometria sono da considerarsi a favore di sicurezza nel momento in cui sono conseguenza di un minor quantitativo di materiale abbancato. Un eventuale aumento del quantitativo finale previsto in progetto, dovrà essere valutato nell'ottica di verificare la stabilità globale del cumulo stesso.



Abbildung 3: Lageplan Hinterrigger maximale Füllphase

Figura 3. Planimetria deposito Hinterrigger, fase finale di massimo riempimento

# 4 GEOLOGISCHER, HYDROGEOLOGISCHER UND GEOMORPHOLOGISCHER ÜBERBLICK

Die Materialdeponie Hinterrigger liegt im Riggertal im Bereich des Hofes Hinterrigger. Dies Studie betrifft neben dem Gelände der Materialdeponie des Stollens Unterplattner, der die Gebiete Unterplattner und Hinterrigger verbindet.

Die Studie erfolgte im Gebiet der Baustelle und der Materialdeponie Hinterrigger, die sich im Talboden und auf der Terrasse von Vahrn (Industriezone Vahrn) befinden und aus geologischer Sicht aus Lockermaterialablagerungen unterschiedlicher Herkunft bestehen.

Die Terrasse in der orographischen Rechten des Talbodens besteht vorwiegend aus fluvioglazialen und Seeablagerungen. Untergeordnet finden sich auch glaziale Moränenablagerungen. Im Talboden finden sich post-glaziale und fluviale Sedimente, am Terrassenrand finden sich auf eluviale und kolluviale Ablagerungen.

Nur an der nördlichen Grenze des Untersuchungsgebietes steht der felsige Untergrund an, der hier aus den Brixner Phylliten und Brixner Granit besteht.

Hier im Riggertal ist eine enge Schlucht ausgebildet, die durch den Eisack durch Erosion entstanden ist. Im Gebiet (SS49) der Brücke findet man den Übergang zwischen den Brixner Phylliten im Süden und dem Brixner Granit im Norden. Die Schieferung fällt mit 50° Richtung NO-SW ein. Die Trennflächenfamilien bestehen vorwiegend aus Klüften, wobei einige Störungsflächen auch Hinweise auf Bewegungsrichtungen findet drei Hauptkluftsysteme.

Der Eisack, der das Gelände der Materialdeponie nach NO und N begrenzt, ist der Hauptsammler. Neben dem Eisack finden sich keine anderen Fließgewässer. Das Grundwasser befindet sich je nach Morphologie in ca. 2,5 m bis 15m Tiefe ab Geländeoberkante. Die Durchlässigkeit der Sedimente ist Funktion der Art der Ablagerungen. Im Talboden erwartet man sich hohe Durchlässigkeiten. Auf dem Gelände der Materialdeponie wird das Grundwasser nicht genutzt. Sei es der Tiefbrunnen "Sossai", der das Trinkwasser für den Hinterrigger Hof liefert, als auch die Tränke Baumgartner liegen südlich des Geländes der Materialdeponie Hinterrigger. Ein Einfluss auf das Wasser, was die Mengen betrifft, ist unwahrscheinlich.An der NW und W Grenze des Geländes Steinschlaggefahr, die nicht nur die Oberfläche der Materialdeponie betrifft, sondern auch dessen Zufahrtsstraße.

Es sind Arbeiten zum Schutz der Straßenrand- und Steinschlagnetze geplant, um den Hang vor PED zu schützen.

# 4 INQUADRAMENTO GEOLOGICO, IDROGEOLOGICO E GEOMORFOLOGICO

Il deposito Hinterrigger è situato nella Val Riga nella zona del podere Hinterrigger. Lo studio comprende, oltre all'area di deposito, anche la zona del cunicolo Unterplattner, che collega le aree Unterplattner e Hinterrigger.

Lo studio si è svolto nell'area di cantiere e del deposito Hinterrigger, situati sul fondovalle e sul terrazzo di Varna (zona industriale di Varna) che dal punto di vista geologico, sono formati principalmente da terreni sciolti d'origine diversa.

Il terrazzo in destra orografica del fondovalle è composto prevalentemente da sedimenti fluvioglaciali e lacustri. Subordinatamente si possono rinvenire depositi morenici conservati. Sul fondovalle si trovano sedimenti post-glaciali e fluviali, ai bordi del terrazzo vi sono anche deposti eluviali e colluviali.

Solo in corrispondenza del limite settentrionale della zona di studio affiora il substrato roccioso costituito da Fillade di Bressanone e Granito di Bressanone.

Qui la Val Riga si restringe in una gola stretta incisa dall'Isarco in seguito ad erosione. Nella zona (SS49) del ponte si trova il passaggio da Fillade di Bressanone a sud a Granito di Bressanone a nord. La scistosità della roccia ha direzione ca. NE-SW con inclinazione di 50° ca. Le famiglie dei giunti sono rappresentate prevalentemente da fratture e con alcuni piani di faglie con indicatori cinematici. Essenzialmente troviamo tre sistemi di frattura principali.

L'Isarco che delimita l'area di deposito verso NE e E, rappresenta il collettore principale. Oltre al fiume Isarco non sono presenti altre linee di deflusso. In relazione alla morfologia, la falda freatica si trova da ca. 2,5 m fino a 15m sotto il piano campagna. La permeabilità dei sedimenti varia in funzione della tipologia di deposito. Nel fondovalle ci si aspetta una permeabilità elevata. Nell'area di deposito non viene utilizzata l'acqua di falda. Sia il pozzo "Sossai" che fornisce acqua potabile al maso Hinterrigger che l'abbeveratoio Baumgartner sono situati a sud della superficie di deposito Hinterrigger. Un'interferenza quantitativa sulle acque risulta poco probabile. Lungo il limite NW e W dell'area persiste un notevole pericolo di caduta massi che è rilevante non solo per la superficie di deposito ma anche per la strada di accesso.

Sono previste opere a protezione del ciglio stradale e reti paramassi a protezione del versante da PED.

# 5 GEOTECHNISCHE CHARAKTERISIERUNG

Im Rahmen der Neugestaltung der temporären und definitiven Form der Lagerstätte wurden weitere Untersuchungen zur besseren Charakterisierung des Lagerstättenmaterials selbst durchgeführt (ohne Untersuchung der Gründungsschichten).

Die Baugrundcharakterisierungsparameter wurden auf Basis der vorliegenden Untersuchungen neu analysiert, resultierend konservativ im Vergleich zu Literaturwerten für analoge Materialien.

Es wird daher bestätigt, dass die in PE gewählten Werte ausreichend repräsentativ für das Material sind, das unterhalb der nachweispflichtigen Böschung vorhanden ist.

# 5.1 VERFÜGBARE UNTERSUCHUNGEN

Als Teil des ausführenden Projekts wurde eine Untersuchungskampagne durchgeführt, 5 die aus Bergungskernen (L = 15 m) und dynamischen penetrometrischen Tests (SPT) in den vorrückenden Kernbohrlöchern sowie Durchlässigkeitstests bestand, die beide im Bohrloch durchgeführt wurden als im Labor.

Die Ergebnisse dieser Untersuchungen und die getroffene geotechnische Charakterisierung sind im Bericht 02\_H61\_DB\_300\_KTB\_B0130\_51055 zur Überprüfung der Standsicherheit und Setzung von Hinterrigger beschrieben, auf den für weitere Informationen verwiesen werden sollte.

Die durchgeführten Untersuchungen bestehen aus:

- Kontinuierliches Kernbohren;
- Seismische Refraktionstomographie in P- und S-Wellen;

 Entnahme von Proben aus den Erhebungen mit Durchführung anschließender Laboruntersuchungen.

- Kontinuierliches Kernbohren;
- · Infiltrometrische Tests;

Eine Untersuchung zu letzterem findet sich weiter unten.

#### 5.1.1 Umfragen

2 kontinuierliche Kernbohrungen namens BH1 und BH2 wurden von der Lagerstättenebene aus durchgeführt. Die Bohrung BH1 befindet sich in zentraler Lage der Lagerstätte, die Bohrung BH2 in Hangnähe. Die Bohrungen durchqueren den gesamten Lagerstättenkörper bis zum Baugrund. Bestimmtes:

• kontinuierliche Kernbohrung bis zu einer Tiefe von 80,00 m von b.c. genannt BH1 (Ausführungshöhe 705 m ü.M.);

# 5 CARATTERIZZAZIONE GEOTECNICA

Nell' ambito della riprogettazione della conformazione temporanea e definitiva del deposito, sono state eseguite ulteriori indagini per meglio caratterizzare il materiale costituente il deposito stesso (non indagando gli strati di fondazione).

I parametri di caratterizzazione del terreno di fondazione sono stati rianalizzati sulla base delle indagini disponibili, risultando cautelativi comparati a valori di letteratura per materiali analoghi.

Si conferma pertanto, che i valori scelti in PE sono sufficientemente rappresentativi del materiale presente al di sotto del rilevato oggetto di verifica.

# 5.1 INDAGINI DISPONIBILI

Nell'ambito del Progetto Esecutivo è stata eseguita una campagna di indagini costituita da 5 carotaggi a recupero (L=15 m) e da prove penetrometriche dinamiche (SPT) eseguite nei fori di carotaggio in avanzamento, nonché da prove di permeabilità e prove infiltrometriche realizzate sia in foro che in laboratorio.

I risultati di tali indagini e la caratterizzazione geotecnica adottata vengono descritti nella relazione 02\_H61\_DB\_300\_KTB\_B0130\_51055 di verifica di stabilità e assestamenti di Hinterrigger, alla quale si rimanda per ogni approfondimento.

Le indagini eseguite consistono in:

- Sondaggi a carotaggio continuo;
- Tomografia sismica a rifrazione in onde P e S;

• Prelievo di campioni dai sondaggi con esecuzione di successive prove di laboratorio.

- Sondaggi a carotaggio continuo;
- Prove infiltrometriche;

Nel seguito si riporta una disamina di quest'ultime.

# 5.1.1 Sondaggi

Sono stati eseguiti n°2 sondaggi a carotaggio continuo denominati BH1 e BH2 eseguiti dalla quota del deposito. Il sondaggio BH1 ubicato in posizione centrale del deposito, il BH2 prossimo alla scarpata. I sondaggi attraversano l'intero corpo del deposito fino ad intestarsi nel terreno di fondazione. In particolare:

• sondaggio a carotaggio continuo spinto fino alla profondità di 80.00 m da p.c. denominato BH1 (quota di esecuzione 705 m s.l.m.);

• kontinuierliche Kernbohrung bis zu einer Tiefe von 62,00 m von b.c. genannt BH2 (Ausführungshöhe 686 m ü.M.).

Da es sich bei dem Material, aus dem die Lagerstätte besteht, hauptsächlich um grobkörnige Bestandteile handelt, wurden die Bohrungen "trocken" durchgeführt, um eine Auswaschung zu vermeiden und somit eine maximale Repräsentativität der Kernbohrungen zu gewährleisten.

In Anhang 1 befinden sich die stratigraphische Beschreibung der erhaltenen Stämme und die Fotos der Kassetten. Weitere Informationen zu den angewandten sind dem Dokument zu entnehmen, das von der Firma wurde, die die Untersuchungen durchführt (Georicerche-Bericht – Geognostische, die in der Hinterrigger-Deponie mit in der Gemeinde Varna BZ durchgeführt wurde).

# 5.1.2 Seismische Untersuchungen

Es wurden zwei seismische Refraktionstomographie-Ausbreitungen in P- und S-Wellen durchgeführt. Die Länge der Ausbreitungen beträgt etwa 130 bzw. 150 m, wobei versucht wurde, die Breite, um eine tiefergehende innerhalb der Lagerstätte selbst zu ermöglichen.

Im Anhang 1 finden Sie das Ergebnis der seismischen Brechung mit den mit L1 und L2 bezeichneten Schichten.



Abbildung 4: Seismisches Profil L1 und L2 mit Vp-Kompressions

Im L1-Profil finden sich Werte über 1000 m/s, typisch für eher verdichtete Ablagerungen, und erreichen ein Maximum von etwa 1800 m/s, was typisch für ein alteriertes Gesteinssubstrat wäre; Vor diesem Hintergrund deuten diese Werte eher auf kompaktes Lagerstättenmaterial hin.

Im Profil L2 betragen die Vp-Werte etwa 1100 m/s oder mehr, was auf den Bereich hinweist, in dem die Ablagerung relativ stärker verdichtet ist als der darüber liegende Teil.

Die beiden Verlegungen L1 und L2 wurden auf dem im Bau befindlichen Pfahl durchgeführt, in der Endphase wird die im Abschnitt angegebene maximale Höhe erreicht.

Weitere Informationen zu den verwendeten Ausführungsmethoden finden Sie im Dokument des Unternehmens, das die Untersuchungen durchführt (Akron-Tabelle – Seismische Brechung Vp und Vs). • sondaggio a carotaggio continuo spinto fino alla profondità di 62.00 m da p.c. denominato BH2 (quota di esecuzione 686 m s.l.m.).

Dato che il materiale costituente il deposito è prevalentemente a componente grossolana, i sondaggi sono stati realizzati "a secco" per evitare dilavamenti e garantire quindi la massima rappresentatività del carotaggio.

In Appendice 1 è presente la descrizione stratigrafica dei logs ottenuti e le foto delle cassette. Per ulteriori informazioni sulle metodiche esecutive impiegate si rimanda al documentoemesso dalla ditta esecutrice dei sondaggi (Report Georicerche - Campagna di indagini geognostiche eseguita nel deposito Hinterrigger ospitante materiale smarino nel comune di Varna BZ).

# 5.1.2 Indagini sismiche

Sono state eseguite n°2 stese di tomografia sismica a rifrazione in onde P e S. La lunghezza delle stese è rispettivamente di circa 130 e 150 m, cercando di sfruttare la massima ampiezza possibile per avere più profondità di indagine all'interno del deposito stesso.

In Appendice 1 è presente il risultato delle sismiche a rifrazione con le stese indicate come L1 e L2.



Figura 4. Profilo sismico, da sinistra L1 e L2 con onde Vp

Nel profilo L1 si trovano valori superiori a 1000m/s, tipici dei depositi piuttosto compattati, e raggiungono un massimo di circa 1800m/s, che sarebbero tipici di un substrato roccioso alterato; dato il contesto, tali valori indicano piuttosto materiale di deposito particolarmente compatto.

Nel profilo L2 i valori di Vp sono pari a circa 1100m/s o superiori, indicando la zona dove il deposito è relativamente più compattato rispetto alla parte sovrastante.

I due stendimenti L1 e L2 sono stati eseguiti sul cumulo in costruzione, nella fase finale si raggiunge la massima altezza indicata in sezione.

Per ulteriori informazioni sulle metodiche esecutive impiegate si rimanda al documento emesso dalla ditta esecutrice delle indagini (Tavola Akron - Sismica a rifrazione Vp e Vs).

#### 5.1.3 Labortests

Bodenproben wurden aus 2 Bohrungen entnommen, die mit kontinuierlicher Kernbohrung durchgeführt wurden. Jede Probe wurde den folgenden Labortests unterzogen:

- Eröffnung und Beschreibung;
- · Volumen Gewicht;
- Partikelgrößenanalyse;
- Atterberg-Grenzen;
- · Großer Direktschnitttest.

Wir haben 7 Proben für die BH1-Umfrage und 6 Proben für die BH2-Umfrage getestet. In den Zertifikaten der Prüfstelle wurde BH1 mit BH2 vertauscht.

Die granulometrischen Analysen des Materials, die an den entnommenen Proben durchgeführt wurden, zeigten ein Material, das im Durchschnitt zu mehr als 40 % aus groben Körnungen bestand (in der Grafik sind die am Durchgang gesiebten Durchmesser 2 - 63 mm orange hervorgehoben).

#### 5.1.3 Prove di laboratorio

Sono stati prelevati campioni di terreno dai n°2 sondaggi eseguiti a carotaggio continuo. Ciascun campione è stato sottoposto alle seguenti prove di laboratorio:

- Apertura e descrizione;
- Peso di volume;
- Analisi granulometrica;
- Limiti di Atterberg;
- Prova di taglio diretto di grandi dimensioni.

Si sono testati 7 campioni per il sondaggio BH1 e 6 campioni per il sondaggio BH2. Nei certificati emessi dal laboratorio incaricato delle prove è stato invertito il BH1 con il BH2.

Le analisi granulometriche del materiale, effettuate sui campioni prelevati hanno evidenziato un materiale composto mediamente per oltre il 40% da pezzature grossolane (nel grafico vengono evidenziate in arancio i diametri setacciati al passante 2 – 63 mm).



Abbildung 5. Granulometrische Analyse. Ergebnisse der Siebtests für BH1 und BH2

Insbesondere die direkten Scherversuche wurden aufgrund der Grobheit der untersuchten Böden in großen Zellen durchgeführt. Ziel war es, die Scherfestigkeitseigenschaften des Bodens bestmöglich zu untersuchen, da dies der Hauptparameter ist. der in den anschließenden Stabilitätsanalysen der Lagerstätte aufgrund der Empfindlichkeit derselben in Bezug auf die Bedingungen der Lagerstätte (Böschungen) verwendet werden muss der Böschungen und Höhen, die dadurch beträchtlich erreicht werden). Die herkömmliche Direktschneideausrüstung ist tatsächlich für begrenzte Korngrößen (typischerweise bis zu 1

Figura 5. Analisi Granulometrica. Risultati delle prove al setaccio per BH1 e BH2

In particolare, per le prove di taglio diretto, vista la natura grossolana dei terreni oggetto di indagine, sono state eseguite in cella di grandi dimensioni. Il fine era quello di indagare nel miglior modo possibile le caratteristiche di resistenza al taglio dei terreni, essendo questo il parametro principale da adottare nelle successive analisi di stabilità del deposito vista la delicatezza delle stesse in relazione alle condizioni del deposito (pendenze delle scarpate ed altezze ragguardevoli raggiunte dallo stesso). L'apparecchiatura di taglio diretto tradizionale è infatti adatta per granulometrie limitate (tipicamente fino a 1 mm di diametro) e pertanto è mm Durchmesser) geeignet und daher nur teilweise repräsentativ für den zu testenden Boden. Bei größeren Partikelgrößen sieht der traditionelle Dosentest die Auswahl des feinen Teils des Bodens und die Rekonstitution der Proben nur mit dem so abgetrennten Teil vor.

In Anlage 2 befinden sich die Zertifikate der durchgeführten direkten Scherversuche und der granulometrischen Klassifizierung mit den Atterberg-Grenzen mit der AGI-Klassifizierung. Weitere Informationen zu Laboruntersuchungen entnehmen Sie bitte den Laborzertifikaten des mit der Untersuchung beauftragten Labors (Bericht Tiqu / ISB - Prüfberichte).

rappresentativa solo in parte del terreno sottoposto a prova. Nel caso di granulometrie maggiori la prova in scatola tradizionale prevede la selezione della parte fina del terreno e la ricostituzione dei provini solo con la porzione così separata.

In Appendice 2 sono presenti i certificati delle prove di taglio diretto eseguite e la classificazione granulometrica con i limiti di Atterberg con la classificazione AGI. Per ulteriori informazioni sulle prove di laboratorio si rimanda ai certificati di laboratorio emessi dal laboratorio incaricato delle prove (Report Tiqu/ISB – Rapporti di prova).

# 5.1.4 Infiltrometrische Tests

Zur Diskretisierung des Permeabilitätskoeffizienten wurden 3 infiltrometrische Tests durchgeführt.

Für jeden einzelnen Test wird der zurückgegebene Wert des Permeabilitätskoeffizienten als arithmetisches Mittel der während der Zeitdiskretisierung des Tests erhaltenen Einzelwerte bestimmt.

Anhang 1 enthält das Ergebnis der infiltrometrischen Tests (Socotec).

Die erhaltenen Ergebnisse stimmen mit den Informationen überein, die aus der Fachliteratur und aus Experimenten stammen, die an durchlässigen Formationen durchgeführt wurden, die aus granulometrischer und lithologischer Sicht ähnlich sind und durch einen durchschnittlichen Durchlässigkeitsgrad von 5 x 10-4 [m/s] gekennzeichnet sind.

# 5.1.4 Prove infiltrometriche

Sono state eseguite n°3 prove infiltrometriche per discretizzare il coefficiente di permeabilità.

Per ogni singola prova, il valore del coefficiente di permeabilità restituito è determinato come media aritmetica dei singoli valori ottenuti durante la discretizzazione temporale della prova

In Appendice 1 è presente il risultato delle prove infiltrometriche (Socotec).

I risultati ottenuti sono in linea con le informazioni deducibili dalla letteratura tecnica e da sperimentazioni eseguite su formazioni permeabili similare dal punto di vista granulometrico e litologico, caratterizzati da un grado di permeabilità medio pari 5x10-4 [m/s]

| K (m/s)          |        | 10<br>1           | 1                  | 10 <sup>.</sup><br>1 | 10-2       | 10 <sup>-3</sup> | 10-4 | 10 <sup>-5</sup> | 10 <sup>-6</sup> | 10-7         | 10 <sup>-8</sup> | 10** | 10-10 | 10-11 |
|------------------|--------|-------------------|--------------------|----------------------|------------|------------------|------|------------------|------------------|--------------|------------------|------|-------|-------|
| 1                | omogen | iea               | ¢                  | ihiala               |            | Sa               | bia  | Sab              | bia molto        | fine         | S                | Ht.  | Arg   | çillə |
| Granulometria    | varia  | Ghi<br>gros<br>me | aia<br>sa e<br>dia | G                    | hiala e sa | bbia             |      | 5                | abbia e a        | rgilla e lin | ni               |      |       |       |
| Gradi di permeab | ilità  |                   |                    | Elevat               | a          |                  |      |                  |                  | Bassa        |                  |      | Nu    | ва    |
| Tipi di formazio | ni     |                   | ĺ,                 | Permea               | bili       |                  |      |                  | Sem              | i-perme      | abili            |      | Imp   | per.  |

Tabelle 5-1: infiltrometrischer Test

Tabella 5-1: prova infiltrometrica

# 5.2 ORT DER UNTERSUCHUNGEN

# 5.2 UBICAZIONE DELLE INDAGINI

Die folgenden Abbildungen zeigen den Ort der durchgeführten Untersuchungen zur Charakterisierung des Lagerstättenmaterials.

Nelle figure seguenti si riporta l'ubicazione delle indagini eseguite per caratterizzare il materiale costituente il deposito.



Abbildung 6: Grundriss mit Standort der Erhebungen

Figura 6. Planimetria con ubicazione dei sondaggi



Abbildung 7: Planen Sie mit dem Standort der seismischen Figura 7. Planimetria con ubicazione delle indagini sismiche Untersuchungen



Abbildung 8: Lokalisierung von infiltrometrischen Tests

Figura 8. Localizzazione prove infiltrometriche

# 5.3 DEFINITION DER BEZUGSTRATIGRAPHIE

Basierend auf den in Anhang 1 enthaltenen Informationen zu den Erhebungskarten ist die Projektstratigraphie in der folgenden Tabelle dargestellt.

# 5.3 DEFINIZIONE DELLA STRATIGRAFIA DI RIFERIMENTO

Sulla base delle informazioni contenute in Appendice 1 per le schede dei sondaggi si riporta nella tabella seguente la stratigrafia di progetto.

| Strato n.   | Profon | dità (m)<br>e (m) | Descrizione                                                                                                                                            |  |  |  |
|-------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Schicht Mr. | Da     | Α                 | Beschreibung                                                                                                                                           |  |  |  |
| BH1         | 0.00   | 80.00             | Materiale di risulta costituito da detriti di varie litologie<br>provenienti da lavori di scavo di galleria.<br>Sandiger Kies mit Schluff              |  |  |  |
| BH2         | 0.00   | 62.00             | Materiale di risulta costituito da detriti di varie litologie<br>provenienti da lavori di scavo di galleria. Feinsand mit<br>Schluff, schluffiger Sand |  |  |  |

Tabelle 2: Projektstratigraphie

Tabella 2: Stratigrafia di progetto

#### 5.4 GRUNDWASSERSPIEGEL

Das Gelände für die vorgesehene Materialdeponie befindet sich im Gebiet des Riggertals und des Eisacks, der der Hauptsammler ist. Die Wasserführung des Eisacks wird durch reguliert durch den Fortezza-Staudamm. Neben dem Fluss Eisack gibt es im Rahmen der Lagerstätte keine weiteren Abflussleitungen.

Zur Messung des Grundwasserspiegels sind im Lagerbereich 4 Piezometer installiert. Der Grundwasserspiegel liegt bei Übergabe der Flächen auf ca. 630 Metern Seehöhe ca. 4 – 10 m unter dem bestehenden Geländeniveau. Es wird angenommen, dass es mit der Eisackebene verbunden ist. Diese Daten sind unverändert gegenüber den Annahmen im Projektdokument 02\_H61\_DB\_300\_KTB\_B0130\_51055, auf das für weitere Informationen bitte verwiesen wird.

Die in der Tabelle aufgeführten piezometrischen Messungen sind auch in ANHANG 1 im Bericht über die Testprotokolle der Bohrlöcher enthalten, die mit dem Detektor 02\_H61\_DB\_300\_KTB\_B0130\_51059 durchgeführt wurden.

# 5.4 ANDAMENTO DELLA FALDA

La superficie di deposito prevista è situata nella zona della Val Riga e del fiume Isarco, che rappresenta il collettore principale. I deflussi dell'Isarco vengono regolati dalla diga di Fortezza. Accanto al fiume Isarco, nel contesto del deposito, non sono presenti altre linee di deflusso superficiale.

Nell'area di deposito sono installati 4 piezometri per la misura del livello di falda. Il livello della falda si trova a circa 4 – 10 m sotto il piano campagna esistente alla consegna delle aree alla quota 630 mslm circa. Si presume che sia collegato alla quota del fiume Isarco. Tali dati sono invariati rispetto alle assunzioni effettuate nel documento di progetto 02\_H61\_DB\_300\_KTB\_B0130\_51055, al quale si rimanda per ogni approfondimento.

Le misurazioni piezometriche, riportate in Tabella, sono presenti anche in ALLEGATO 1 nella relazione sulle minute di prova dei sondaggi eseguiti sul rilevato 02\_H61\_DB\_300\_KTB\_B0130\_51059.

| Grundwasser<br>messstelle /<br>Piezometro | Versuchsteufe /<br>profondità di<br>prova<br>[m] | GW-Stand/<br>livello falda<br>[m] |
|-------------------------------------------|--------------------------------------------------|-----------------------------------|
| Ri-B-01/05                                | 12.00-13.50                                      | 9.4                               |
| Ri-B-02/05                                | 12.00-13.50                                      | 9.2                               |
| Ri-B-03/05                                | 12.00-13.50                                      | 3.2                               |
| Ri-B-04/05                                | 12.00-13.50                                      | 10.1                              |
|                                           |                                                  |                                   |

 Tabelle 3: Bei Untersuchungen festgestellter Grundwasserspiegel

Tabella 3: Livello di falda rilevato nei sondaggi

Nachfolgend finden Sie eine Grafik des Grundwassertrends, überwacht durch piezometrische Messungen.

Di seguito si mostra un grafico dell'andamento della falda, monitorato tramite misurazioni piezometriche.





Figura 9. Andamento della falda monitorato nei rilievi

# 5.5 MATERIAL GELAGERT IN DEN EHEMALIGEN GRUBEN

Im Bereich des ArealsHinterrigger, auf dem das aus dem Ausbruch der Baulose Mauls II und Mauls III resultierende Ausbruchmaterial gelagert wird, wurde Füllmaterial abgelagert, dessen wie folgt abgeschätzt werden.

Ausgehend von den um den Partialkoeffizienten reduzierten durchschnittlichen charakteristischen Parametern des "Falls F2" ergäben sich charakteristische Werte oberhalb der in der Tabelle gezeigten Menge aus der "Fall F1"-Literatur.

Für die durchgeführten numerischen Analysen (Kap. 7) wurde daher unter Berücksichtigung des "Falls F1" auf den kritischsten Fall in Bezug auf Widerstands- und dieser Lagerstätten Bezug genommen.

Der Wertesatz "Fall F1" wurde als Satz geotechnischer, da er im Vergleich zum Satz der Mittelwerte F2, reduziert um den Koeffizienten ⊔M der Gruppe M2, als abwertend und als gut repräsentativ angesehen wurde das Füllmaterial.

Es ist zu beachten, dass am Fuß des Hügels eine 60 cm dicke Schicht aus ausgewähltem und verdichtetem Aushubmaterial in grober Größe mit Kieseln mit einem Durchmesser von D = 100-200 mm über die gesamte Oberfläche der Grundfläche des PED-Damms gelegt wurde.

Die Stratigraphie ist im Entwurfsdokument 02\_H61\_EW\_450\_KLP\_B0130\_51118 angegeben.

# 5.5 MATERIALI DI RIEMPIMENTO STOCCATI NELLE EX-CAVE

In corrispondenza dell'area di Hinterrigger, sono stati depositati dei materiali di riempimento ante-operam le cui caratteristiche vengono stimate come segue.

Partendo dai parametri caratteristici medi del "Caso F2" ridotti del coefficiente parziale, si otterrebbero valori caratteristici al di sopra del set più cautelativo riportato in tabella, da letteratura "Caso F1".

Per le analisi numeriche effettuate (Cap. 7) si è fatto quindi riferimento al caso maggiormente critico in termini di parametri di resistenza e deformabilità di tali depositi, prendendo in esame il "Caso F1".

Il set di valori "Caso F1" è stato assunto come Set di parametri geotecnici di progetto, in quanto ritenuto peggiorativo rispetto al set di valori medi F2 ridotti attraverso il coefficiente  $\gamma M$  del gruppo M2 e sufficientemente rappresentativi del materiale di riempimento.

L'abbattimento dei parametri del "Caso F1" avrebbe comportato la restituzione di valori notevolmente bassi e poco indicativi dei terreni effettivamente presenti in situ

Si noti che alla base del cumulo è stato posizionato uno strato di 60cm di materiale da scavo selezionato e compattato, a pezzatura grossolana con ciottoli di diametro D=100-200mm, su tutta la superficie dell'impronta del rilevato da PED.

La stratigrafia viene riportata nell'elaborato progettuale 02\_H61\_EW\_450\_KLP\_B0130\_51118.

| Fall/<br>Caso | c <sub>k</sub> ' [kPa] | φ <sub>k</sub> '[°] | E <sub>k</sub> [MPa] | Osservazioni                                                                                                                                                           |
|---------------|------------------------|---------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1            | 0.00                   | 20                  | 5                    | Charakteristische Werte aus der Literatur<br>für lehmig-tonige Böden<br>Valori caratteristici ripresi da letteratura per<br>terreni limo argillosi                     |
| F2            | 0.00                   | 29                  | 15                   | Mittelwerte zwischen Fall F1 und Fall F3<br>Valori medi tra il caso F1 e il caso F3                                                                                    |
| F3            | 0.00                   | 38                  | 25                   | Parameter, welche mit den Eigenschaften<br>der ersten In-Situ-Bodenschicht<br>übereinstimmen.<br>Parametri coincidenti a quelli del primo<br>strato di terreno in situ |

Tabelle 4: Für die numerische Berechnung geotechnische Parameter Tabella 4: Strati Parametri geotecnici ipotizzati per l'analisi numerica

Es ist zu beachten, dass die Scherfestigkeitseigenschaften in Form von effektiven Spannungen angenommen wurden, da diese Materialien im Laufe der Zeit über dem Boden abgelagert wurden und sich daher zu bestimmten Jahreszeiten in Bedingungen teilweiser Sättigung befinden, wenn nicht sogar., getrocknet.

Außerdem haben die Untersuchungen im Bereich der Gründungsschichten gezeigt, dass der Grundwasserspiegel sich auf einer variablen Tiefen zwischen 5 und 10 m befindet, weshalb ein Aufsteigen des Wassers durch Kapillarität auszuschließen ist. Occorre evidenziare che le caratteristiche di resistenza al taglio sono state assunte in termini di tensioni efficaci in quanto tali materiali sono stati depositati nel tempo al di sopra del piano campagna e conseguentemente sono in condizioni di parziale saturazione se non addirittura, in certi periodi dell'anno, secchi.

Tra l'altro, le indagini condotte in corrispondenza dei terreni di fondazione hanno mostrato che la falda è situata ad una profondità variabile e compresa fra 5 e 10 m e quindi una risalita dell'acqua per capillarità è da escludere.

# 5.6 DEPONIEMATERIAL

In der von diesem Gutachten erfassten Lagerstätte wird Aushubmaterial der Gruppen B und C abgelagert, dh Material, das nicht für die Betonherstellung geeignet ist.

Da die von der Ablagerung vorgesehenen geometrischen Konfigurationen und Höhen ziemlich hoch sind und maximale Höhen von bis zu 80 m erreichen, wird es für die Stabilität des Damms wesentlich sein, dass er einen ausreichenden Verdichtungsgrad gewährleistet.

Die Bewertung der Scherfestigkeitseigenschaften des Lagerstättenmaterials für die in diesem Bericht berichteten Stabilitätsprüfungen basierten auf Labortests (Anhang 2), die an dem aus der Lagerstätte selbst stammenden Material durchgeführt wurden.

In den Zertifikaten der Prüfstelle wurde BH1 mit BH2 vertauscht.

#### 5.6.1 BH1-Umfrageergebnisse

Die Tabelle zeigt die Durchschnittswerte der 6 Proben, an denen die Labortests durchgeführt wurden.

Die folgende Abbildung zeigt die Klassifizierung des Materials gemäß den Normen DIN 18196, UNI 11531-1 und USCS.

Es gibt auch die durchschnittliche granulometrische Kurve des Materials aus der BH1-Untersuchung an, aus der ersichtlich ist, dass das Material als Kies oder schluffiger oder toniger Sand mit einem schluffigen Anteil (0,006-0,06 mm) zwischen 22 und 33 % klassifiziert ist. ein Sandanteil (0,06-2 mm) zwischen 28 und 34 % und ein Kiesanteil (2-60 mm) etwa 36-46 %, das restliche Material hat einen Durchmesser größer als 63 mm (Kiesel).

# 5.6 MATERIALE DI DEPOSITO

Nel deposito oggetto della presente relazione sarà depositato materiale di scavo appartenente ai gruppi B e C, ovverosia materiale non idoneo per il confezionamento dei calcestruzzi.

Poiché le configurazioni geometriche e le altezze previste dal deposito sono abbastanza elevate, raggiungendo altezze massime fino a 80 m, sarà indispensabile per garantirne la stabilità del rilevato la messa in opera che garantisca un sufficiente grado di compattazione.

La valutazione delle caratteristiche di resistenza al taglio del materiale del deposito per le verifiche di stabilità riportate nella presente relazione si sono basate su prove di laboratorio (Appendice 2) condotte sul materiale proveniente dal deposito stesso.

Nei certificati emessi dal laboratorio incaricato delle prove è stato invertito il BH1 con il BH2.

# 5.6.1 Risultati sondaggio BH1

Dal sondaggio sono stati prelevati 6 campioni su cui sono state effettuate le prove di laboratorio.

La Figura di seguito mostrata riporta la classificazione del materiale secondo le normative DIN 18196, UNI 11531-1 e USCS.

Riporta, inoltre la curva granulometrica media del materiale proveniente dal sondaggio BH1, dalla quale si può notare che il materiale è classificato come ghiaia con sabbia limosa che ha una frazione limosa (0.006-0.06 mm) compresa fra il 22 ed il 33% una frazione sabbiosa (0.06-2 mm) compresa fra il 28 ed il 34% ed una frazione di ghiaia (2-60 mm) intorno al 36-46%, il restante materiale ha un diametro superiore ai 63 mm (ciottoli).

| Classificazione Terre               |                    |         | DIN 18196 | / UNI 11531-1 | / USCS  |         |
|-------------------------------------|--------------------|---------|-----------|---------------|---------|---------|
| Coeff. di uniformità Cu=D60/D10     | 200                | 110     | 130       | 230           | 180     | 220     |
| Coeff. di curvatura Cc=D30²/D60*D10 | 0.3                | 0.3     | 0.2       | 0.3           | 0.4     | 0.5     |
| Umidità naturale del terreno % W    | ND                 | ND      | ND        | ND            | ND      | ND      |
| Limite di liquidità WL              | 23 <mark>.4</mark> | 23.1    | 25.0      | 24.6          | 28.9    | 24.1    |
| Indice di plasticità IP             | 1.2                | 1.6     | 5.4       | 2.3           | 2.8     | 2.4     |
| DIN                                 | GU*                | SU*     | SU*       | GU*           | GU*     | SU*     |
| UNI                                 | A2/A2-b            | A2/A2-4 | A2 / A2-4 | A2/A2-4       | A1/A1-b | A2/A2-4 |
| USCS                                | GM                 | SM      | GM-GC     | GM            | GM      | SM      |

Abbildung 10. Ergebnisse der Bodenklassifizierung (durchgeführt am Material der BH1-Erhebung)

Figura 10. Risultati classificazione terre (effettuata sul materiale prelevato dal sondaggio BH1)

Im Folgenden beschreibt die Atterberg-Klassifikation den Boden als lehmiAnteils von weniger als 50 %, typisch für organische Böden mit geringer und leichter Plastizität. La classificazione di Atterberg descrive il terreno come limoso con un limite di parte liquida inferiore al 50%, tipico dei terreni a bassa plasticità.

# 5.6.2 BH2-Umfrageergebnisse

Die Tabelle zeigt die Durchschnittswerte der 7 Proben, an denen die Labortests durchgeführt wurden.

Die folgende Abbildung zeigt die Klassifizierung des Materials gemäß den Normen DIN 18196, UNI 11531-1 und USCS.

Es berichtet auch die durchschnittliche granulometrische Kurve des Materials aus der BH1-Untersuchung, aus der ersichtlich ist, dass das Material als Kies oder schluffiger Sand klassifiziert ist, der einen schluffigen Anteil (0,006–0,06 mm) zwischen 23 und 30 % Sand aufweist (0,06-2 mm) zwischen 21 und 34 % und Kiesanteil (2-60 mm) etwa 38-45 %, das restliche Material hat einen Durchmesser größer als 63 mm (Kiesel).

#### 5.6.2 Risultati sondaggio BH2

Dal sondaggio sono stati prelevati 7 campioni su cui sono state effettuate le prove di laboratorio.

La Figura di seguito mostrata riporta la classificazione del materiale secondo le normative DIN 18196, UNI 11531-1 e USCS.

Riporta, inoltre la curva granulometrica media del materiale proveniente dal sondaggio BH1, dalla quale si può notare che il materiale è classificato come ghiaia con sabbia limosa che ha una frazione limosa (0.006-0,06 mm) compresa fra il 23 ed il 30% una frazione sabbiosa (0.06-2 mm) compresa fra il 21 ed il 34% ed una frazione di ghiaia (2-60 mm) intorno al 38-45%, il restante materiale ha un diametro superiore ai 63 mm (ciottoli).

| Classificazione Terre               |         |         | DIN 18196 | / UNI 11531-1 | / USCS  |         |         |
|-------------------------------------|---------|---------|-----------|---------------|---------|---------|---------|
| Coeff. di uniformità Cu=D60/D10     | 200     | 110     | 130       | 180           | 210     | 350     | 180     |
| Coeff. di curvatura Cc=D30²/D60*D10 | 0.3     | 0.3     | 0.2       | 0.3           | 0.8     | 0.4     | 0.4     |
| Umidità naturale del terreno % W    | ND      | ND      | ND        | ND            | ND      | ND      | ND      |
| Limite di liquidità WL              | 23.4    | 23.1    | 25.0      | 25.9          | 27.5    | 24.9    | 25.8    |
| Indice di plasticità IP             | 1.2     | 1.6     | 5.4       | 5.7           | 6.3     | 6.8     | 6.0     |
| DIN                                 | GU*     | SU*     | SU*       | GU*           | GU*     | GU*     | GU*     |
| UNI                                 | A2/A2-b | A2/A2-4 | A2/A2-4   | A1/A1-b       | A2/A2-4 | A2/A2-4 | A2/A2-4 |
| USCS                                | GM      | SM      | GM-GC     | GM-GC         | GM-GC   | GM-GC   | GM-GC   |

Abbildung 11. Ergebnisse der Bodenklassifizierung (durchgeführt am Material der BH2-Erhebung) Figura 11. Risultati classificazione terre (effettuata sul materiale prelevato dal sondaggio BH2)

Im Folgenden beschreibt die Atterberg-Klassifikation den Boden als lehmig und tonig mit einer Grenze des flüssigen Anteils von weniger als 50%, typisch für organische Böden mit geringer und leichter Plastizität.

Das berücksichtigte Volumengewicht wurde vorsichtig mit 21 kN / m3 angenommen, wobei ein Durchschnitt der Volumengewichte aller durchgeführten Tests berücksichtigt wurde.

Die für das Material der Lagerstätte B + C angenommenen Parameter (in Übereinstimmung mit den durchgeführten Labortests) in den Berechnungsanalysen sind die folgenden: a bassa plasticità.

La classificazione di Atterberg descrive il terreno come limoso

con un limite di parte liquida inferiore al 50%, tipico dei terreni

Il peso di volume considerato è stato preso come 21 kN/m<sup>3</sup> considerando una media dei pesi di volume di tutte le prove eseguite.

I parametri caratteristici adottati per il materiale del deposito B+C, (in accordo con le prove di laboratorio eseguite) nelle analisi di calcolo sono i seguenti:

$$\begin{split} \gamma &= 21 \text{ kN/m}^3; \\ \text{c}' &= 45 \text{ kPa}; \\ \phi' &= 37^\circ; \\ \text{E}' &= 30 \text{ MPa}; \\ \upsilon' &= 0.3. \end{split}$$

Insbesondere wurde für den Reibungswinkel der sich aus Laborversuchen ergebende Mittelwert angenommen, für die Kohäsion vorsorglich ein Wert nahe dem Minimum. In particolare, per l'angolo di attrito si è assunto il valore medio scaturito dalle prove di laboratorio mentre per la coesione, in via prudenziale, un valore prossimo al minimo.

Die folgenden Abbildungen zeigen die Ergebnisse der großformatigen direkten Scherversuche bezüglich Kohäsion und Reibungswinkel in Abhängigkeit von der Abzugstiefe. Nelle figure successive sono riportati i risultati delle prove di taglio diretto di grandi dimensioni in termini di coesione e angolo d'attrito in funzione della profondità di prelievo.



Abbildung 12. Charakteristische Werte des Scherwiderstandswinkels der Materialien in der Lagerstätte in Abhängigkeit von der Böschungshöhe. Ergebnisse des direkten Schertests mit großen Kästen für BH1 und BH2





Abbildung 13. Charakteristische Kohäsionswerte der Lagerstättenmaterialien in Abhängigkeit von der Böschungshöhe. Ergebnisse des direkten Schertests mit großen Kästen für BH1 und BH2.





Abbildung 14. Werte der Atterberggrenzen der Lagerstättenmaterialien in Abhängigkeit von der Böschungshöhe. für BH1 und BH2. Figura 14. Valori dei limiti di Atterberg dei materiali del deposito in funzione dell'altezza del terrapieno. Risultati delle prove per BH1 e BH2.

### 5.7 BERECHNUNGSPARAMETER

Die geotechnischen Parameter, die in den mit der Plaxis-Software implementierten numerischen Modellen mit Bezug auf den Baugrund verwendet wurden, sind unten aufgeführt. Weitere Informationen finden Sie im Bericht 02 H61 DB 300 KTB B0130 51055.

Um das reale Verhalten der Böden möglichst genau zu berücksichtigen, insbesondere zum Zweck einer genaueren Analyse von induzierten Setzungen, wurde entschieden, das konstitutive Modell Hardening Soil zu verwenden.

Dieses Modell ermöglicht es, die Entwicklung der plastischen Verformung vor dem Bruch und die unterschiedliche Steifigkeit des Bodens unter Belastungs- und Entlastungs- / Wiederbelastungsbedingungen zu berücksichtigen.

Die Annahme für die Bestimmung der Parameter ist wie folgt:

- E<sub>50</sub> = E<sub>oed</sub> = E<sub>MC</sub>
- $E_{ur} = 3 \times E_{50}$
- $K_0^{nc} = 1 sen(\phi)$

# 5.7 PARAMETRI DI CALCOLO TERRENO DI FONDAZIONE

Vengono di seguito riportati i parametri geotecnici utilizzati nei modelli numerici implementati tramite il software Plaxis con riferimento al terreno di fondazione. Per maggiori informazioni si rimanda alla relazione 02\_H61\_DB\_300\_KTB\_B0130\_51055.

Per tener conto in modo più accurato possibile del reale comportamento dei terreni, soprattutto ai fini di una più accurata analisi dei cedimenti indotti, si è deciso di utilizzare il modello costitutivo Hardening Soil.

Tale modello permette di tener conto dello sviluppo di deformazione plastiche pre-rottura e della differente rigidezza del terreno in condizioni di carico e di scarico/ricarico.

L'assunzione per la determinazione dei parametri è la seguente:

- $E_{50} = E_{oed} = E_{MC}$
- $E_{ur} = 3 \times E_{50}$
- $K_0^{nc} = 1 \text{sen}(\phi)$

| Strato                      | Profo<br>(r<br>Tiefe | ondità<br>n)<br>e (m) | Modello<br>adottato | φ <sub>k</sub> ' | Е <sub>мс</sub> | E <sub>50</sub> ref<br>E <sub>oed</sub> ref | E <sub>ur</sub> ref | power<br>(m) | v   | Pref  | K₀ <sup>nc</sup> | Cref    | Ψ   | γs      |
|-----------------------------|----------------------|-----------------------|---------------------|------------------|-----------------|---------------------------------------------|---------------------|--------------|-----|-------|------------------|---------|-----|---------|
| Schicht                     | Da                   | Α                     | -                   | (°)              | (MPa)           | (MPa)                                       | (MP<br>a)           | (-)          | (-) | (kPa) | (-)              | (kN/m²) | (°) | (kN/m³) |
| 1                           | 0                    | 3                     | HS                  | 38               |                 | 25                                          | 75                  | 0            | 0.2 | 100   | 0.38             | 5       | 0   | 20      |
| 2                           | 3                    | 6                     | HS                  | 40               |                 | 40                                          | 120                 | 0            | 0.2 | 100   | 0.36             | 0       | 0   | 20      |
| 3                           | 6                    | 13                    | HS                  | 42               |                 | 50                                          | 150                 | 0            | 0.2 | 100   | 0.33             | 0       | 0   | 20      |
| 4                           | 13                   | 15                    | HS                  | 36               |                 | 30                                          | 90                  | 0            | 0.2 | 100   | 0.41             | 0       | 0   | 20      |
| 5                           | 15                   | 25                    | HS                  | 36               |                 | 70                                          | 210                 | 0.4          | 0.2 | 100   | 0.41             | 0       | 0   | 20      |
| Riempimento<br>ex-cave (F1) | Var. o<br>10m c      | da 5 a<br>Ial p.c.    | MC                  | 20               | 5               |                                             |                     |              | 0.3 |       |                  | 0       | 0   | 20      |

Tabelle 5: Geotechnische Berechnungsparameter

Tabella 5: Parametri geotecnici di calcolo terreno di fondazione

Die Tiefen, auf die sich die verschiedenen Schichten beziehen, sind in Tabelle 3 gezeigt und sind in Bezug auf die Bestimmungen des ausführenden Projekts unverändert geblieben PED. Le profondità alle quali sono riferiti i vari strati sono riportati nella Tabella 3 e sono rimasti invariati rispetto a quanto previsto nella relazione di PED

# 6 PLANUNGSKRITERIEN NACH GRENZZUSTÄNDEN

Für das geplante Bauwerk müssen die nachfolgenden Sicherheitsnachweise durchgeführt und Leistungen nachgewiesen werden (par. 6.2.3. der NTC2008):

- Nachweis des Grenzzustands der Gebrauchstauglichkeit (GZG).
- Nachweis des Grenzzustands der Tragfähigkeit (GZT);

Für jeden **Grenzzustand der Gebrauchstauglichkeit (GZG)** muss folgende Bedingung erfüllt sein:

 $E_d \le C_d$  (Eq. 6.2.7 der NTC 2008)

wobei:

E<sub>d</sub> = Bemessungswert der Auswirkung der Einwirkungen;

C<sub>d</sub> = vorgeschriebener Grenzwert der Auswirkungen von Einwirkungen (vom Planer bestimmt).

Der Nachweis der Bedingung  $E_d \leq C_d$  muss unter der Anwendung der charakteristischen Werte der Einwirkungen und der geotechnischen Kenngrößen der Materialien erfolgen.

Für jeden Grenzzustand der Tragfähigkeit (GZT) muss folgende Bedingung erfüllt sein:

 $E_d \le R_d$  (Eq. 6.2.1 der NTC 2008)

wobei:

E<sub>d</sub> = Bemessungswert Auswirkung der Einwirkungen;

R<sub>d</sub> = Bemessungswert Widerstand.

Der Nachweis der Bedingung  $E_d \leq R_d$  muss durch den Gebrauch verschiedener Kombinationen von Teilsicherheitsbeiwertgruppen erfolgen, die die für Einwirkungen (A1 e A2), für die geotechnischen Kenngrößen (M1 e M2) und für die Widerstände (R1, R2 e R3) definiert sind. Die zu verwendenden Beiwerte bei den jeweiligen Kombinationen werden in Funktion des jeweiligen Nachweises definiert (siehe folgenden Kapitel). Es wird unterstrichen, dass für die Einwirkungen bestimmt werden können oder, die durch die charakteristischen Werte der Einwirkungen bestimmt werden (Kap. 6.2.3.1 der NTC 2008).

# 6 CRITERI DI PROGETTAZIONE AGLI STATI LIMITE

Per l'opera in esame devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. delle NTC2008):

- verifiche agli Stati Limite d'Esercizio (SLE).
- verifiche agli Stati Limite Ultimi (SLU);

Per ogni **Stato Limite d'Esercizio (SLE)** deve essere rispettata la condizione:

 $E_d \le C_d$  (Eq. 6.2.7 delle NTC 2008)

dove:

E<sub>d</sub> = valore di progetto dell'effetto dell'azione;

C<sub>d</sub> = valore limite prescritto dell'effetto delle azioni (definito dal Progettista).

La verifica della condizione  $E_d \leq C_d$  deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

Per ogni **Stato Limite Ultimo (SLU)** deve essere rispettata la condizione:

 $E_d \le R_d$  (Eq. 6.2.1 delle NTC 2008)

dove:

Ed = valore di progetto dell'azione o dell'effetto dell'azione;

R<sub>d</sub> = valore di progetto della resistenza.

La verifica della condizione  $E_d \leq R_d$  deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (*A1* e *A2*), per i parametri geotecnici (*M1* e *M2*) e per le resistenze (*R1*, *R2* e *R3*). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto  $E_d$  tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 delle NTC 2008).

# 6.1 SICHERHEITSNACHWEISE IM STATISCHEN BEREICH

# 6.1.1 Grenzzustand der Gebrauchstauglichkeit (GZG)

Es muss unter Verwendung der charakteristischen Werte der Einwirkungen und der geotechnischen Kenngrößen der Materialien (Kap. 6.5.3.2 der NTC 2008) nachgewiesen werden, dass die Verschiebungen des untersuchten Bauwerks und des umliegenden Bodens kompatible mit der Funktionalität des Bauwerks selbst und mit der Sicherheit von angrenzenden Strukturen sind.

Im Projekt müssen demnach die Bestimmungen bzgl. der kompatiblen Verschiebungen für das Bauwerk und seiner erwarteten Funktionalität vorgeschrieben sein. Es ist Aufgabe des Projektanten die Werte der Verschiebungen/ Rotationen festzulegen, die einem Grenzzustand der und der Strukturen werden müssen.

Man muss dabei beachten, dass die Nachweise des Grenzzustands der Gebrauchstauglichkeit restriktiver ausfallen können als jene des Grenzzustand der Tragfähigkeit.

#### 6.1 VERIFICHE DI SICUREZZA IN CAMPO STATICO

#### 6.1.1 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 delle NTC 2008), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

All'interno del progetto devono pertanto essere definite le prescrizioni riguardanti gli spostamenti compatibili per l'opera e le prestazioni attese. È a carico del Progettista definire valori di spostamenti/rotazioni corrispondenti ad uno Stato Limite di Esercizio delle opere e strutture da confrontarsi con quelli calcolati.

Deve essere tenuto presente che le verifiche agli Stati Limite di Esercizio possono risultare più restrittive di quelle agli Stati Limite Ultimi.

#### 6.1.2 Grenzzustand der Tragfähigkeit (GZT)

Die Nachweise der Standsicherheit im statischen Bereich für Bauwerke aus Lockermaterial, wie Aufschüttungen und Dämme, müssen nachfolgenden Ansatz erfolgen (Kap. 6.8.2 der NTC 2008).

#### Ansatz 1:

#### Kombination 2:

A2 + M2 + R2

unter Berücksichtigung der Teilsicherheitsbeiwerte aus den Tabelle 7.1, 7.2 und 7.3.

Der Gesamtstandsicherheitsnachweis gilt erfüllt, wenn:

#### 6.1.2 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati e terrapieni, devono essere eseguite secondo il seguente approccio (Par. 6.8.2 delle NTC 2008).

#### Approccio 1:

#### Combinazione 2:

La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_{d}}{E_{d}} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_{R}} \cdot R}{E_{d}} \ge 1 \Rightarrow \frac{R}{E_{d}} \ge \gamma_{R}$$

1

R, der Gesamtwiderstand des Systems (siehe Kap. C.6.8.6.2 der Circolare 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008) aufgrund der Bemessungswerte der Einwirkungen, der Projektparameter der Projektgeometrie berechnet und wird  $(\mathbf{R} = \mathbf{R} \left| \gamma_{\mathsf{F}} \cdot \mathsf{F}_{\mathsf{k}}; \frac{\mathsf{X}_{\mathsf{k}}}{\gamma_{\mathsf{m}}}; \mathsf{a}_{\mathsf{d}} \right|).$ 

Die Gesamtstandsicherheit der Einheit Bauwerk-Baugrund muss unter den unterschiedlichen Bedingungen untersucht werden, die den verschiedenen Bauphasen und dem Endzustand des Bauwerks entsprechen.

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 della Circolare 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008), calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto ( R = R  $\left[\gamma_{F} \cdot F_{k}; \frac{X_{k}}{\gamma_{m}}; a_{d}\right]$ ).

di La stabilità globale dell'insieme manufatto-terreno studiata nelle fondazione deve essere condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

| CARICHI<br>LASTEN                                                                     | EFFETTO<br>EINWIRKUNG    | Coefficiente<br>parziale<br>Teilsicherheitsbei<br>wert γ <sub>F</sub> (ο γ <sub>E</sub> ) | EQU | (A1) | (A2) |
|---------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------|-----|------|------|
| Permanenti                                                                            | Favorevole<br>Günstig    |                                                                                           | 0.9 | 1.0  | 1.0  |
| Ständige                                                                              | Sfavorevole<br>Ungünstig | γG1                                                                                       | 1.1 | 1.3  | 1.0  |
| Permanenti non strutturali <sup>(1)</sup><br>Ständige, nicht statische <sup>(1)</sup> | Favorevole<br>Günstig    |                                                                                           | 0.0 | 0.0  | 0.0  |
|                                                                                       | Sfavorevole<br>Ungünstig | γG2                                                                                       | 1.5 | 1.5  | 1.3  |
| Variabili<br>Veränderliche                                                            | Favorevole<br>Günstig    |                                                                                           | 0.0 | 0.0  | 0.0  |
|                                                                                       | Sfavorevole<br>Ungünstig | γαί                                                                                       | 1.5 | 1.5  | 1.3  |

<sup>(1)</sup> Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano completamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

<sup>(1)</sup> Im Falle, dass die ständigen nicht statischen Lasten (z. B. die getragenen ständigen Lasten) vollständig definiert sind, kann man dieselben Beiwerte anwenden, die für ständige Einwirkungen gelten

Tabelle 6: Teilsicherheitsbeiwert der Einwirkungen (Tab. 6.2.I der NTC 2008) Tabella 6: Coefficienti parziali sulle azioni (Tab. 6.2.1 delle NTC 2008)

| PARAMETRO<br>KENNWERT                                                        | Coefficiente<br>parziale<br>Teilsicherheits<br>beiwerte | (M1) | (M2) |
|------------------------------------------------------------------------------|---------------------------------------------------------|------|------|
| Tangente dell'angolo di resistenza al taglio<br>Tangente des Reibungswinkels | $\gamma_{\phi'}$                                        | 1.0  | 1.25 |
| Coesione efficace<br>effektive Kohäsion                                      | γς'                                                     | 1.0  | 1.25 |
| Resistenza non drenata<br>Festigkeit des undränierten Bodens                 | γCu                                                     | 1.0  | 1.4  |
| Peso dell'unità di volume<br>Wichte                                          | Ŷγ                                                      | 1.0  | 1.0  |

Tabelle 7: Teilsicherheitsbeiwerte der Böden (M1 und M2) (Tab. 6.2.II der NTC 2008) Tabella 7: Coefficienti parziali sui terreni (M1 ed M2) (Tab. 6.2.II delle NTC 2008)

| Coefficiente<br>parziale<br>Teilsicherheits<br>beiwert | (R2)               |  |  |  |
|--------------------------------------------------------|--------------------|--|--|--|
| γR                                                     | 1.1                |  |  |  |
| R2) für den                                            | Tabella 8: Coeffic |  |  |  |

Tabelle 8: Teilsicherheitsbeiwert der Widerstände (R2) für den Gesamtstandsicherheitsnachweis (Tab. 6.8.I der NTC 2008)

| bella 8: Coefficiente parziale sulle resistenze (R2) per le verifiche | d |
|-----------------------------------------------------------------------|---|
| stabilità globale (Tab. 6.8.1 delle NTC 2008)                         |   |

# 6.2 SICHERHEITSNACHWEISE IM SEISMISCHEN BEREICH

# 6.2.1 Bezugsgrenzzustände für Nachweise bei Erdbebeneinwirkung

Die NTC 2008 definieren verschiedene Grenzzustände (sei es der Gebrauchstauglichkeit als auch der Tragfähigkeit) je nach Wichtigkeit des Bauwerks (Definition der Gebrauchsklasse) und dann in Funktion des Schadens, der Folge eines gewissen Grenzzustands ist.

Im Besonderen werden folgende Grenzzustände der Gebrauchstauglichkeit und der Tragfähigkeit definiert (laut Kap. 3.2.1 der NTC 2008):

# • Grenzzustand der Gebrauchstauglichkeit (GZG)

- Grenzzustand der unmittelbaren Arbeitsfähigkeit SLO für das Bauwerk und die Maschinen, die nach einem Erdbeben arbeitsfähig bleiben müssen. Dieser Grenzzustand wird nicht auf das vorliegende Bauwerk angewandt.
- Grenzzustand des Schadens SLD, als jener Grenzzustand definiert, der eine grundlegende Vollständigkeit des Bauwerks und seines unmittelbaren Gebrauchs garantiert.

# • Grenzzustand der Tragfähigkeit (GZT):

- Grenzzustand Wahrung der des menschlichen Lebens, SLV, definiert als jener Grenzzustand, bei dem das Bauwerk einen bedeutenden Verlust der Starrheit in Bezug auf horizontale Lasten, aber nicht auf vertikale erfährt. I asten F٩ besteht ein Sicherheitsspielraum für den Kollaps aufgrund von horizontalen Erdbebeneinwirkungen.
- Grenzzustand der Vorbeugung des Kollapses, SLC, Grenzzustand bei dem das Bauwerk schwere statische Schäden erfährt, aber trotzdem ein Sicherheitsspielraum für vertikale Einwirkungen und einen geringen Sicherheitsspielraum für horizontale Lasten beibehält.

Die Tabelle 9 gibt in Funktion der Gebrauchsklasse des Bauwerks den zu berücksichtigenden Grenzzustand in Funktion des geeigneten Sicherheitsnachweises für das Bauwerk an (Tabelle C7.1.I der Circolare del 2 febbraio 2009, n. 617).

Mit Bezug zum geplanten Bauwerk und unter Berücksichtigung des Punktes C7.1 der Circolare del 2

# 6.2 VERIFICHE DI SICUREZZA IN CAMPO SISMICO

# 6.2.1 Stati limite di riferimento per le verifiche sismiche

Le NTC 2008 stabiliscono differenti Stati Limite (sia d'Esercizio che Ultimi) in funzione, in primo luogo, dell'importanza dell'opera mediante l'identificazione della Classe d'Uso e poi in funzione del danno conseguente ad un certo Stato Limite.

In particolare si definiscono i seguenti Stati Limite di Esercizio e Ultimi, come riportato al par. 3.2.1 delle NTC 2008:

# • Stati Limite di Esercizio (SLE):

- Stato Limite di immediata Operatività SLO per le strutture ed apparecchiature che debbono restare operative a seguito dell'evento sismico. Tale stato limite non si applica per l'opera in oggetto.
- Stato Limite di Danno SLD definito come lo stato limite da rispettare per garantire la sostanziale integrità dell'opera ed il suo immediato utilizzo.

# • Stati Limite Ultimi (SLU):

- Stato Limite di Salvaguardia della Vita umana,
   SLV, definito come lo stato limite in cui la struttura subisce una significativa perdita della rigidezza nei confronti dei carichi orizzontali ma non nei confronti dei carichi verticali. Permane un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
  - Stato Limite di Prevenzione del Collasso, SLC, stato limite nel quale la struttura subisce gravi danni strutturali, mantenendo comunque un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza a collasso per carichi orizzontali.

La Tabella 9 riporta, in funzione della classe d'uso della struttura, lo stato limite da considerare in funzione della verifica di sicurezza appropriata per l'opera (Tabella C7.1.I della Circolare del 2 febbraio 2009, n. 617).

Con riferimento all'opera in oggetto, e considerando quanto riportato al punto C7.1 della Circolare del 2 febbraio 2009, n.

febbraio 2009, n. 617, müssen die geotechnischen Nachweise im Falle von Erdbeben folgende Grenzzustände nachweisen:

- Grenzzustand der Tragfähigkeit: SLV -Grenzzustand der Wahrung des Lebens (dem eine Übertretungswahrscheinlichkeit von P<sub>vr</sub> =10% während eines Zeitraums von V<sub>r</sub> entspricht);
- Grenzzustand der Gebrauchstauglichkeit: SLD -Grenzzustand des Schadens (dem eine Übertretungswahrscheinlichkeit von P<sub>vr</sub> =63% während eines Zeitraums von V<sub>r</sub> entspricht):

Die obengenannten Wahrscheinlichkeiten wurden für den Bezugszeitraum Vr für die Erdbebeneinwirkung bewertet und erlauben es, für jeden Grenzzustand die Wiederkehrzeit des entsprechenden Bemessungserdbebens zu bestimmen. 617, le verifiche geotecniche in presenza di un evento sismico richiedono la verifica ai seguenti stati limite:

- Stato Limite Ultimo: SLV Stato Limite di Salvaguardia della Vita (cui corrisponde una probabilità di superamento Pvr =10% nel periodo Vr);
- Stato Limite Esercizio: SLD Stato Limite di Danno (cui corrisponde una probabilità di superamento P<sub>vr</sub> =63% nel periodo V<sub>r</sub>).

Le suddette probabilità, valutate nel periodo di riferimento  $V_r$  per l'azione sismica, consentono di determinare, per ciascuno stato limite, il tempo di ritorno del terremoto di progetto corrispondente.

| Stato Limite | Stato Limite Prestazione da verificare                                                                                                                                   |   |    | Classe d'uso<br>Gebrauchsklasse |    |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|---------------------------------|----|--|--|--|--|
| Grenzzustand |                                                                                                                                                                          | 1 | II | III                             | IV |  |  |  |  |
| SLO          | Contenimento del danno degli elementi non strutturali<br>Eindämmung von Schäden an nicht statischen<br>Elementen                                                         |   |    | X                               | x  |  |  |  |  |
|              | Funzionalità degli impianti<br>Funktionalität der Anlagen                                                                                                                |   |    | Х                               | х  |  |  |  |  |
|              | Resistenza degli elementi strutturali<br>Widerstand der statischen Elemente                                                                                              |   |    | Х                               | х  |  |  |  |  |
|              | Contenimento del danno degli elementi non strutturali<br>Eindämmung von Schäden an nicht statischen<br>Elementen                                                         | х | х  |                                 |    |  |  |  |  |
| SLD          | Contenimento delle deformazioni del sistema fondazione-<br>terreno<br>Eindämmung der Verformungen des Systems Baugrund-<br>Boden                                         | х | х  | х                               | х  |  |  |  |  |
|              | Contenimento degli spostamenti permanenti dei muri di<br>sostegno<br>Eindämmung der ständigen Verschiebungen der<br>Stützmauer                                           | х | x  | х                               | х  |  |  |  |  |
|              | Assenza di martellamento tra strutture contigue<br>Abwesenheit von Schwingungswirkungen zwischen<br>angrenzenden Bauwerken                                               | х | х  | х                               | x  |  |  |  |  |
|              | Resistenza delle strutture<br>Widerstand der Bauwerke                                                                                                                    | Х | Х  | Х                               | х  |  |  |  |  |
|              | Duttilità delle strutture<br>Flexibilität der Bauwerke                                                                                                                   | Х | Х  | Х                               | х  |  |  |  |  |
|              | Assenza di collasso fragile ed espulsione di elementi non<br>strutturali<br>Fehlen der fragile Kollaps und Auswurf von nicht<br>statischen Elementen                     | х | x  | х                               | х  |  |  |  |  |
|              | Resistenza dei sostegni e collegamenti degli impianti<br>Widerstand der Stützen und Verbindungen der Anlagen                                                             | Х | Х  | х                               | Х  |  |  |  |  |
| SLV          | Stabilità del sito<br>Standsicherheit des Ortes                                                                                                                          | Х | Х  | Х                               | х  |  |  |  |  |
|              | Stabilità dei fronti di scavo e dei rilevati<br>Standsicherheit der Aushubfronten und der<br>Aufschüttungen                                                              | х | х  | х                               | х  |  |  |  |  |
|              | Resistenza del sistema terreno-fondazione<br>Widerstand des Systems Baugrund-Gründung                                                                                    | Х | Х  | Х                               | х  |  |  |  |  |
|              | Stabilità del muro di sostegno<br>Standsicherheit der Stützmauern                                                                                                        | Х | Х  | Х                               | х  |  |  |  |  |
|              | Stabilità delle paratie<br>Standsicherheit der Baugrubenwände                                                                                                            | Х | Х  | Х                               | х  |  |  |  |  |
|              | Resistenza e stabilità dei sistemi di contrasto e degli<br>ancoraggi<br>Widerstand und Standsicherheit der Kontrast -Systeme<br>und der Verankerungen                    | х | х  | х                               | х  |  |  |  |  |
| SLC          | Resistenza dei dispositivi di vincolo temporaneo tra<br>costruzioni isolate<br>Widerstand der temporären Verbindungen temporäre<br>Bindung zwischen isolierten Bauwerken | х | x  | х                               | х  |  |  |  |  |
|              | Capacità di spostamento degli isolatori<br>Fähigkeit zur Verschiebung der Isolatoren                                                                                     | Х | Х  | Х                               | х  |  |  |  |  |

Tabelle 9: Sicherheitsnachweise in Funktion der Gebrauchsklasse (Tab. C7.1.I der Circolare del 2 febbraio 2009, n. 617) Tabella 9: Verifiche di sicurezza in funzione della Classe d'uso (Tab. C7.1.I della Circolare del 2 febbraio 2009, n. 617)

# 6.2.2 Grenzzustand der Gebrauchstauglichkeit (GZG)

Es muss nachgewiesen werden unter Verwendung der charakteristischen Werte der Einwirkungen und der geotechnischen Kenngrößen der Materialien, dass die vom Erdbeben verursachten ständigen Verschiebungen den Widerstand der Gründungen nicht grundlegend verändern und mit der Funktionstüchtigkeit des Bauwerks kompatibel sind. Tabelle 9). Für das vorliegende Bauwerk, wie im Kap. 6.2.1 definiert, werden die Nachweise des Grenzzustands der Gebrauchstauglichkeit mit Bezug zum Grenzzustand des Schadens (**SLD**) durchgeführt.

# 6.2.3 Grenzzustand der Tragfähigkeit (GZT)

Bei allen Nachweisen muss der Bemessungswert der Erdbebeneinwirkung aufgrund der Grenzzustände des nachzuweisenden Bauwerks ermittelt werden (siehe Tabelle 9). Für das vorliegende Bauwerk, wie im Kap. 6.2.1 definiert, werden die Nachweise des Grenzzustands der Tragfähigkeit mit Bezug zum Grenzzustand der Wahrung des Lebens (**SLV**) durchgeführt.

Die Sicherheitsweise der Tragfähigkeit müssen im seismischen Bereich mindestens denen entsprechen, die im statischen Bereich erfolgen. Im Besonderen muss die Gesamtstandsicherheit unter seismischen Bedingungen von Bauwerken aus Lockermaterial nach dem *Ansatz 1 - Kombination 2* durchgeführt werden:

unter Berücksichtigung der Teilsicherheitsbeiwerte Table 4 und mit den Teilsicherheitsbeiwerten der Einwirkungen gleich 1 (siehe Kap.7.11.1 der NTC 2008).

Die Standsicherheitsbedingungen des Dammes bzw. der Aufschüttung müssen darauf nachgewiesen werden, dass vor, während und nach einem Erdbeben die Widerstände des Systems größer sind als die Einwirkungen. D. h. die ständigen Verschiebungen durch das Erdbeben dürfen nicht so groß sein, dass sie die Sicherheit oder die Funktionstüchtigkeit der Bauwerke oder der Infrastrukturen beeinträchtigen.

Wie im Kap. 7.11.6.3.11 der NTC 2008 angegeben, können die Nachweise durch quasi-statische Methoden, Methoden der Verschiebungen und der dynamischen Analyse durchgeführt werden.

# 6.2.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali, che gli spostamenti permanenti indotti dal sisma non alterino significativamente la resistenza della fondazione e devono essere compatibili con la funzionalità dell'opera. L'azione sismica di progetto deve essere valutata sulla base degli Stati Limite relativi all'opera da verificare (vedasi Tabella 9). Per l'opera in oggetto, come definito al paragrafo 6.2.1, le verifiche agli Stati Limite di Esercizio verranno condotte con riferimento allo Stato Limite di Danno (**SLD**).

# 6.2.3 Stati limite ultimi (SLU)

Per tutte le verifiche l'azione sismica di progetto deve essere valutata sulla base degli Stati Limite relativi all'opera da verificare (vedasi Tabella 9). Per l'opera in oggetto, come definito al paragrafo 6.2.1, le verifiche agli Stati Limite Ultimi verranno condotte con riferimento allo Stato Limite di Salvaguardia della Vita (**SLV**).

Le verifiche di sicurezza agli SLU in campo sismico devono contemplare almeno le medesime verifiche definite in campo statico. In particolare la stabilità globale in condizioni sismiche delle opere in materiali sciolti, quali rilevati, deve essere svolta secondo l'*Approccio 1 – Combinazione 2*:

# A2 + M2 + R2

tenendo conto dei coefficienti parziali riportati in Tabella 4 ponendo i coefficienti parziali sulle azioni tutti pari ad uno (vedasi Par.7.11.1 delle NTC 2008).

Le condizioni di stabilità del rilevato-terrapieno devono essere verificate affinché prima, durante e dopo il sisma la resistenza del sistema sia superiore alle azioni, ovvero gli spostamenti permanenti indotti dal sisma siano di entità tale da non pregiudicare le condizioni di sicurezza o di funzionalità delle strutture o infrastrutture medesime.

Come riportato al Par. 7.11.6.3.11 delle NTC 2008, le verifiche possono essere condotte mediante metodi pseudo statici, metodi degli spostamenti e metodi di analisi dinamica.
#### 6.3 BEMESSUNGSWERTE DER BEANSPRUCHUNG

Auf den Materialdeponien wirken folgenden Lasten:

- Eigengewicht.
- Filtrationskräfte: Dank eines Entwässerungspakets am Boden des Ablagerungskörpers und der durch Tests vor Ort festgestellten Durchlässigkeit (angegeben im Bericht über die hydraulische Anordnung 2) können diese Kräfte vernachlässigt werden.
- Beanspruchungen im Falle von Erdbeben: die Studie zum Gesetzgebung sehen f
  ür Bereich eine zwischen 0.025 e 0.050 g vor. Die Stabilit
  ätsanalysen wurden unter Ber
  ücksichtigung gef
  ührt, um die folgenden seismischen Koeffizienten: kh=0.005 und kv=0.003 (SLD), kh=0.013 und kv=0.006 (SLV).
- Belastungen aus einem Hochwasser mit einer Wiederkehrperiode von 150 Jahren
- Lasten aus Steinschlag: Dank der Steinschlagnetze, die oberhalb der Materialdeponie angebracht werden, können die Lasten durch Steinschlag ausgeschlossen werden.

#### 6.3 AZIONI DI PROGETTO

Sui depositi agiscono i seguenti carichi:

- Peso proprio.
- Forze di filtrazione: in funzione della granulometria riscontrata dai sondaggi e dell'elevata permeabilità rilevata dalle prove in sito, il comportamento del materiale del rilevato può essere considerato drenato. Pertanto tali forze risultano essere trascurabili.
- Sollecitazioni in caso di terremoto: lo studio di rischio sismico e l'attuale normativa indicano per il sito in oggetto un'accelerazione massima compresa fra 0.025 e 0.050 g. Le verifiche di stabilità sono state eseguite tenendo conto dei seguenti coefficienti sismici: kh=0.005 e kv=0.003 nel caso di SLD, kh=0.013 e kv=0.006 nel caso di SLV.
- Carichi derivanti da una piena con periodo di ritorno di 150 anni
- Carichi da caduta massi: grazie alle reti di protezione che sono state posizionate sopra il deposito, il caso di carichi da caduta massi per la stessa può essere escluso.

## 7 MODELLGEOMETRIE

Die Spannungs-Dehnungs-Analyse wurde unter Verwendung des zweidimensionalen Finite-Elemente-Plaxis-Programms durchgeführt, um die durch das Vorhandensein der Lagerstätte induzierten Setzungen zu untersuchen und die Stabilität der Lagerstätte zu überprüfen.

Die Vorteile der FEM-Analyse gegenüber bestehen hauptsächlich darin, dass:

- es ist nicht erforderlich, eine Bruchfläche anzugeben;
- sowohl elastisches als auch plastisches Verhalten können in die Analyse einbezogen werden.

In den Modellen wurde eine Höhe des felsigen Untergrunds von 100 Metern über dem Boden berücksichtigt. In den Bereichen, in denen die Verfüllmaterialien vorhanden sind, wurde, wie oben angegeben, eine Mächtigkeit von 8 Metern unter der Geländeoberfläche berücksichtigt.

Die in der Modellierung analysierten Schnitte stellen die endgültige Konfiguration des Abraumhaufens mit maximalem Füllvolumen dar. Es sind insgesamt 3 und sie sind entsprechend der Abbildung positioniert.

## 7 GEOMETRIA DEI MODELLI

L'analisi sforzi-deformazioni è stata eseguita mediante il programma di calcolo bidimensionale agli elementi finiti Plaxis al fine di indagare i cedimenti indotti dalla presenza del deposito e verificare la stabilità del deposito.

I vantaggi nell'impiegare l'analisi FEM rispetto ai modelli all'equilibrio limite consistono principalmente nel fatto che:

- non è necessario specificare alcuna superficie di rottura;
- 2) si possono includere nell'analisi sia il comportamento elastico che quello plastico.

Nei modelli è stata considerata una quota del substrato roccioso pari a 100 metri dal piano campagna. Nelle aree in cui sono presenti i materiali di riempimento, come indicato in precedenza, è stato considerato uno spessore di 8 metri al di sotto del piano campagna.

Le sezioni analizzate nella modellazione sono rappresentative della configurazione finale del cumulo di materiale di smarino, con il massimo volume di riempimento., in totale sono 3 e sono posizionate in accordo con quanto riportato nella figura.



Abbildung 15. Schematischer Lageplan mit Angabe der untersuchten Schnitte für die Analyse der Spannungszustände

Figura 15. Planimetria schematica con indicazione delle sezioni di studio per l'analisi sforzi-deformazioni

#### 7.1 MODEL SCHNITT 1

Die geometrischen und geotechnischen Eigenschaften der verschiedenen Materialien für den betrachteten **Abschnitt 1** sind unten aufgeführt.

#### Modellgeometrie

SCHNITT 1 / ABSCHNITT 1

Maximale Höhe auf der Anlagenseite (m) 714,0

Tageslichtsteilheit 1V / 1,33H

Der in der Modellierung berücksichtigte Berechnungsteil zum Nachweis des SLS und des ULS/SLV ist in der ausführlichen 02\_H61\_BE\_450\_KQP\_B0130\_54607 detailliert. 7.1 MODELLO SEZIONE 1

Le caratteristiche geometriche e geotecniche dei vari materiali per la **sezione 1** considerata sono riportate di seguito.

#### Geometria del Modello

SCHNITT 1 /SEZIONE 1

Altezza massima lato impianto (m) 714.0

Pendenza scarpata 1V / 1.33H

La sezione di calcolo considerata nella modellazione al fine di verificare gli SLE e gli SLU/SLV, viene dettagliata nell'elaborato 02\_H61\_BE\_450\_KQP\_B0130\_54607.



Abbildung 16. Schnitt 1 PHASE 19

Figura 16. Sezione 1 PHASE 19

Die Hauptmerkmale des geotechnischen Modells werden im Folgenden beschrieben. Die Nachweise der finiten Elemente, der Stratigraphie und der Angaben zu den zugeordneten Materialien sind in Anhang 3 aufgeführt.

#### Eigenschaften des Modellmaterials

Die in der Modellierung angenommenen reduzierten geotechnischen Bemessungsparameter sind in der Tabelle dargestellt.

Sono di seguito descritte le principali caratteristiche del modello geotecnico. Le verifiche agli elemnti finiti, la stratigrafia ed il dettaglio dei materiali assegnati sono riportati in <u>Appendice 3</u>.

#### Caratteristiche del Materiale del Modello

Sono riportati in Tabella i parametri geotecnici ridotti di progetto adottati nella modellazione.

| Profondità | m     | Var. 0 - 8 m | Var. 0 - 8 m | 0 - 3 m  | 3 - 6 m  | 6 - 13 m | 13 - 15 m | 15 - 25 m |
|------------|-------|--------------|--------------|----------|----------|----------|-----------|-----------|
| Colour     |       | B+C          | Strato F1    | Strato 1 | Strato 2 | Strato 3 | Strato 4  | Strato 5  |
| γ unsat    | kN/m³ | 21,00        | 20,00        | 20,00    | 20,00    | 20,00    | 20,00     | 20,00     |
| c'         | kPa   | 36,00        | 0,00         | 4,00     | 0,00     | 0,00     | 0,00      | 0,00      |
| φ (phi)    | 0     | 31,08        | 20,00        | 32,01    | 33,87    | 35,77    | 30,17     | 30,17     |
| E 50 ref   | kN/m² | 30,00E3      | 5,00E3       | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3   | 70,00E3   |

Tabelle 7-10: Gestaltungswerte von Modelliermaterialien

Tabella 7-10:valori di progetto dei materiali di modellazione

#### Modellrechnungsphasen

Beschreibung der in die Modellierung übernommenen Berechnungsschritte

- 1. SLE Geostatischer Zustand;
- 2. SLE Erster Einzahlungsschritt
- (ca. +20 m vom Bodenniveau; 643,12 m ü.M.);
- 3. SLE Zweiter Einzahlungsschritt
- (ca. +40 m vom Boden; 643,12 m ü.M.);
- 4. SLE Dritter Einzahlungsschritt
- (ca. +60 m vom Boden; 643,12 m ü.M.);
- 5. SLE Vierter Einzahlungsschritt
- (ca. +75 m vom Boden; 643,12 m ü.M.);
- 6. SLE / SLU Fünfter Einzahlungsschritt (statisch)
- (ca. +80 m vom Boden; 643,12 m ü.M.);
- 7. SLE / ULS Fünfter Ablagerungsschritt (seismisch)
- (ca. +80 m vom Boden; 643,12 m ü.M.);

# Die letzte Phase des Modells ist unten mit maximaler Füllung dargestellt.

#### Fasi di Calcolo del Modello

Descrizione degli step di calcolo adottati nella modellazione

- 1. SLE Condizione geostatica;
- SLE Primo step di deposito (circa +20m dal piano campagna; 643,12 m.s.l.m);
- SLE Secondo step di deposito (circa +40m dal piano campagna; 643,12 m.s.l.m);
- SLE Terzo step di deposito (circa +60m dal piano campagna; 643,12 m.s.l.m);
- SLE Quarto step di deposito (circa +75m dal piano campagna; 643,12 m.s.l.m);
- SLE / SLU Quinto step di deposito (statica) (circa +80m dal piano campagna; 643,12 m.s.l.m);
- SLE / SLU Quinto step di deposito (sismica) (circa +80m dal piano campagna; 643,12 m.s.l.m);

Di seguito si mostra la fase finale il modello, con massimo riempimento.



Abbildung 17. Model 1 PHASE 19

Figura 17. Modello 1 PHASE 19

#### 7.2 MODEL SCHNITT 2

Die geometrischen und geotechnischen Eigenschaften der verschiedenen Materialien für den betrachteten **Abschnitt 2** sind unten aufgeführt.

#### Modellgeometrie

SCHNITT 1 / ABSCHNITT 1

Maximale Höhe auf der Anlagenseite (m) 716,13

Tageslichtsteilheit 1V / 1,33H

Der in der Modellierung berücksichtigte Berechnungsteil zum Nachweis des SLS und des ULS/SLV ist in der ausführlichen 02\_H61\_BE\_450\_KQP\_B0130\_54607 detailliert. 7.2 MODELLO SEZIONE 2

Le caratteristiche geometriche e geotecniche dei vari materiali per la **sezione 2** considerata sono riportate di seguito.

| <u>Geometria del Modello</u>             |            |  |  |  |
|------------------------------------------|------------|--|--|--|
| SCHNITT 2 /SEZIONE 2                     |            |  |  |  |
| Altezza massima lato impianto (m) 716.13 |            |  |  |  |
| Pendenza scarpata                        | 1V / 1.33H |  |  |  |

Le sezioni di calcolo considerate nella modellazione al fine di verificare gli SLE e gli SLU/SLV, sono meglio dettagliate nell'elaborato 02\_H61\_BE\_450\_KQP\_B0130\_54607.



Abbildung 18: Schnitt 2 PHASE 19

Figura 18. Sezione 2 PHASE 19

Die Hauptmerkmale des geotechnischen Modells werden im Folgenden beschrieben. Die Nachweise der finiten Elemente, der Stratigraphie und der Angaben zu den zugeordneten Materialien sind in Anhang 4 aufgeführt.

#### Eigenschaften des Modellmaterials

Die in der Modellierung angenommenen reduzierten geotechnischen Bemessungsparameter sind in der Tabelle dargestellt.

Sono di seguito descritte le principali caratteristiche del modello geotecnico. Le verifiche agli elemnti finiti, la stratigrafia ed il dettaglio dei materiali assegnati sono riportati in <u>Appendice 4</u>.

#### Caratteristiche del Materiale del Modello

Sono riportati in Tabella i parametri geotecnici ridotti di progetto adottati nella modellazione.

| Colour         B+C         Strato F1         Strato 1           γ unsat         kN/m³         21,00         20,00         20,00           c'         kPa         36,00         0,00         4,00           φ (phi)         °         31,08         20,00         32,01           F store         kN/m²         30,00E3         5,00E3         25,00E3 | 40,00E3  | 35,77<br>50,00E3 | 30,17<br>30,00E3 | 30,17<br>70,00E3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|------------------|------------------|
| Colour         B+C         Strato F1         Strato 1           γ unsat         kN/m³         21,00         20,00         20,00           c'         kPa         36,00         0,00         4,00           φ (phi)         °         31,08         20,00         32,01                                                                                | 55,07    | 35,77            | 30,17            | 30,17            |
| Colour         B+C         Strato F1         Strato 1           γ unsat         kN/m³         21,00         20,00         20,00           c'         kPa         36,00         0,00         4,00                                                                                                                                                      | 22 07    |                  |                  |                  |
| Colour         B+C         Strato F1         Strato 1           γ unsat         kN/m³         21,00         20,00         20,00                                                                                                                                                                                                                       | 0,00     | 0,00             | 0,00             | 0,00             |
| Colour B+C Strato F1 Strato 1                                                                                                                                                                                                                                                                                                                         | 20,00    | 20,00            | 20,00            | 20,00            |
|                                                                                                                                                                                                                                                                                                                                                       | Strato 2 | Strato 3         | Strato 4         | Strato 5         |
| Profondità m Var. 0 - 8 m Var. 0 - 8 m 0 - 3 m                                                                                                                                                                                                                                                                                                        | 3 - 6 m  | 6 - 13 m         | 13 - 15 m        | 15 - 25 m        |

 Tabelle 7-11: Gestaltungswerte von Modelliermaterialien

Tabella 7-11:valori di progetto dei materiali di modellazione

#### Modellrechnungsphasen

Beschreibung der in die Modellierung übernommenen Berechnungsschritte

- 1. SLE Geostatischer Zustand;
- 2. SLE Erster Einzahlungsschritt
- (ca. +20 m vom Bodenniveau; 639,24 m ü.M.);
- 3. SLE Zweiter Einzahlungsschritt
- (ca. +40 m vom Boden; 639,24 m ü.M.);
- 4. SLE Dritter Einzahlungsschritt
- (ca. +60 m vom Boden; 639,24 m ü.M.);
- 5. SLE Vierter Einzahlungsschritt
- (ca. +70 m vom Boden; 639,24 m ü.M.);
- 6. SLE / SLU Fünfter Einzahlungsschritt (statisch)
- (ca. +80 m vom Boden; 639,24 m ü.M.);
- 7. SLE / ULS Fünfter Ablagerungsschritt (seismisch)
- (ca. +80 m vom Boden; 639,24 m ü.M.);

Die letzte Phase des Modells ist unten mit maximaler Füllung dargestellt.

#### Fasi di Calcolo del Modello

Descrizione degli step di calcolo adottati nella modellazione

- 1. SLE Condizione geostatica;
- SLE Primo step di deposito (circa +20m dal piano campagna; 639,24 m.s.l.m);
- SLE Secondo step di deposito (circa +40m dal piano campagna; 639,24 m.s.l.m);
- SLE Terzo step di deposito (circa +60m dal piano campagna; 639,24 m.s.l.m);
- SLE Quarto step di deposito (circa +70m dal piano campagna; 639,24 m.s.l.m);
- SLE / SLU Quinto step di deposito (statica) (circa +80m dal piano campagna; 639,24 m.s.l.m);
- SLE / SLU Quinto step di deposito (sismica) (circa +80m dal piano campagna; 639,24 m.s.l.m);

Di seguito si mostra la fase finale il modello, con massimo riempimento.



Abbildung 19: Model 2 PHASE 19

Figura 19. Modello 2 PHASE 19

#### 7.3 MODEL SCHNITT 3

Die geometrischen und geotechnischen Eigenschaften der verschiedenen Materialien für den betrachteten **Abschnitt 3** sind unten aufgeführt.

#### Modellgeometrie

SCHNITT 1 / ABSCHNITT 1

Maximale Höhe auf der Anlagenseite (m) 716,12

#### Tageslichtsteilheit 1V / 1,33H

Der in der Modellierung berücksichtigte Berechnungsteil zum Nachweis des SLS und des ULS/SLV ist in der ausführlichen 02\_H61\_BE\_450\_KQP\_B0130\_54607 detailliert.

#### 7.3 MODELLO SEZIONE 3

Le caratteristiche geometriche e geotecniche dei vari materiali per la **sezione 3** considerata sono riportate di seguito.

| Geometria del Modello     |           |        |  |  |
|---------------------------|-----------|--------|--|--|
| SCHNITT 3 /SEZIONE 3      |           |        |  |  |
| Altezza massima lato fium | e (m)     | 716.12 |  |  |
| Pendenza scarpata         | 1V / 1.33 | Н      |  |  |

Le sezioni di calcolo considerate nella modellazione al fine di verificare gli SLE e gli SLU/SLV, sono meglio dettagliate nell'elaborato 02\_H61\_BE\_450\_KQP\_B0130\_54607.



Abbildung 20: Schnitt 3 PHASE 19

Figura 20. Sezione 3 PHASE 19

Die Hauptmerkmale des geotechnischen Modells werden im Folgenden beschrieben. Die Nachweise der finiten Elemente, der Stratigraphie und der Angaben zu den zugeordneten Materialien sind in Anhang 5 aufgeführt.

#### Eigenschaften des Modellmaterials

Die in der Modellierung angenommenen reduzierten geotechnischen Bemessungsparameter sind in der Tabelle dargestellt.

Sono di seguito descritte le principali caratteristiche del modello geotecnico. Le verifiche agli elemnti finiti, la stratigrafia ed i materiali assegnati sono riportati anche in <u>Appendice 5</u>.

#### Eigenschaften des Modellmaterials

Die in der Modellierung angenommenen reduzierten geotechnischen Bemessungsparameter sind in der Tabelle dargestellt.

| Profondità     | m     | Var. 0 - 8 m | Var. 0 - 8 m | 0 - 3 m  | 3 - 6 m  | 6 - 13 m | 13 - 15 m | 15 - 25 m |
|----------------|-------|--------------|--------------|----------|----------|----------|-----------|-----------|
| Colour         |       | B+C          | Strato F1    | Strato 1 | Strato 2 | Strato 3 | Strato 4  | Strato 5  |
| $\gamma$ unsat | kN/m³ | 21,00        | 20,00        | 20,00    | 20,00    | 20,00    | 20,00     | 20,00     |
| c'             | kPa   | 36,00        | 0,00         | 4,00     | 0,00     | 0,00     | 0,00      | 0,00      |
| φ (phi)        | 0     | 31,08        | 20,00        | 32,01    | 33,87    | 35,77    | 30,17     | 30,17     |
| E 50 ref       | kN/m² | 30,00E3      | 5,00E3       | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3   | 70,00E3   |

Tabelle 7-12: Gestaltungswerte von Modelliermaterialien

Tabella 7-12:valori di progetto dei materiali di modellazione

#### Modellrechnungsphasen

Beschreibung der in die Modellierung übernommenen Berechnungsschritte

- 1. SLE Geostatischer Zustand;
- 2. SLE Erster Einzahlungsschritt
- (ca. +20 m vom Bodenniveau 631,55 m ü.M.);
- 3. SLE Zweiter Einzahlungsschritt
- (ca. +40 m vom Boden; 631,55 m ü.M.);
- 4. SLE Dritter Einzahlungsschritt
- (ca. +60 m vom Boden; 631,55 m ü.M.);
- 5. SLE Vierter Einzahlungsschritt
- (ca. +70 m vom Boden; 631,55 m ü.M.);
- 6. SLE / SLU Fünfter Einzahlungsschritt (statisch)
- (ca. +80 m vom Boden; 631,55 m ü.M.);
- 7. SLE / ULS Fünfter Ablagerungsschritt (seismisch)
- (ca. +80 m vom Boden; 631,55 m ü.M.);

Die letzte Phase des Modells ist unten mit maximaler Füllung dargestellt.

#### Fasi di Calcolo del Modello

Descrizione degli step di calcolo adottati nella modellazione

- 8. SLE Condizione geostatica;
- SLE Primo step di deposito (circa +20m dal piano campagna; 631,55 m.s.l.m);
- SLE Secondo step di deposito (circa +40m dal piano campagna; 631,55 m.s.l.m);
- SLE Terzo step di deposito (circa +60m dal piano campagna; 631,55 m.s.l.m);
- SLE Quarto step di deposito (circa +70m dal piano campagna; 631,55 m.s.l.m);
- SLE / SLU Quinto step di deposito (statica) (circa +80m dal piano campagna; 631,55 m.s.l.m);
- SLE / SLU Quinto step di deposito (sismica) (circa +80m dal piano campagna; 631,55 m.s.l.m);

Di seguito si mostra la fase finale il modello, con massimo riempimento.



Abbildung 21: Model 3 PHASE 19



# 8 NACHWEIS DER GRENZZUSTÄNDE DER TRAGFÄHIGKEIT UND GEBRAUCHS

Zur Bewertung der Böschungsstabilität wurde die SSR-Methode (Shear Strength Reduction) angewendet, die in der automatischen Reduzierung der Scherfestigkeit (SSR) der Materialien besteht.

Der kritische Reduktionsfaktor, bei dem die numerische Nichtkonvergenz aufzutreten beginnt, wird als gleich dem Sicherheitsfaktor angesehen. Bei diesem Wert, bei dem die Spannungszustände nicht gleichzeitig das Versagenskriterium und das globale Gleichgewicht erfüllen, wird die Steigung also brechen.

Der Zustand in den betrieblichen Grenzzuständen wird dann in Bezug auf die Werft, auf der das Vorfertigungssystem der Segmente vorhanden ist, und in Bezug auf das bestehende Gebäude (Maso Sossai), das sich im südwestlichen Teil des Baufelds befindet, nachgewiesen.

Die Stabilität der Halde wird auch durch Analyse des Abschnitts mit der maximalen Höhe überprüft.

Die Abschnitte 1, 2 und 3 wurden unter Bedingungen im Grenzzustand der Gebrauchstauglichkeit (SLE) analysiert, da sie als repräsentativ für die Analyse der Auswirkungen auf den Platz vor den Halden gelten, auf denen verschiedene Strukturen, wie z Kräne, Gleise usw.; und am Bestandsgebäude südwestlich der Baustelle.

Es ist vernünftig zu erwarten, dass die Isozedanzkurven um den Pfahl herum einen Trend aufweisen, der die Form desselben weitgehend nachzeichnet, und die Analyse der zwei identifizierten Abschnitte beschreibt zuverlässig das tatsächliche Verhalten.

Stattdessen wurden die Berechnungsabschnitte 2 und 3 mit dem Ziel analysiert, die Standsicherheit der Halden bei den Grenzzuständen der Tragfähigkeit (ULS) zu bewerten, die sich durch eine größere Höhe auszeichnen.

Die Bemessungsneigung der Pfähle ist für alle Phasen konstant und beträgt 3:4 (vertikal: horizontal), für Material vom Typ B + C.

## 8 VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO

Per la valutazione della stabilità del versante si è adottato il metodo SSR (shear strenght reduction) che consiste nella riduzione automatica delle resistenze al taglio (SSR) dei materiali.

Il fattore di riduzione critico in corrispondenza del quale inizia ad aver luogo la non convergenza numerica viene considerato pari al fattore di sicurezza. Per questo valore, per il quale gli stati di stress non soddisfano contemporaneamente il criterio di rottura e l'equilibrio globale, avverrà, quindi, la rottura del versante.

Si andrà quindi a verificare la condizione agli stati limite di esercizio relativamente al piazzale dove è presente l'impianto di prefabbricazione dei conci e relativamente all'edificio esistente (maso Sossai) localizzato nella parte sud-ovest dell'area di cantiere.

Verrà inoltre verificata la stabilità del cumulo analizzando la sezione con la massima altezza.

Le sezioni 1, 2 e 3 sono state analizzate in condizioni di stati limite di esercizio (SLE) in quanto sono quelle considerate rappresentative per l'analisi degli effetti indotti sul piazzale antistante i cumuli che ospita varie strutture, quali impianto di prefabbricazione dei conci, carriponte, binari, ecc; e sull'edificio esistente a sud-ovest dell'area di cantiere.

É ragionevole attendersi che le curve di isocedimento intorno al cumulo abbiano un andamento che ricalchi in linea di massima la forma dello stesso e l'analisi delle 2 sezioni individuate descrivano in maniera attendibile il reale comportamento.

Le sezioni di calcolo 1, 2 e 3 sono state invece analizzate con il fine di valutare la stabilità dei cumuli agli stati limite ultimi (SLU)

La pendenza di progetto dei cumuli è costante per tutte le fasi, pari a 3:4 (verticale: orizzontale), per il materiale di tipo B+C.

## 8.1 ANALYSE DER ERGEBNISSE IN BEZUG AUF DIE EINSCHRÄNKUNGSZUSTÄNDE

Nachfolgend sind die Ergebnisse der am GZG durchgeführten Analysen aufgeführt. Es ist zu beachten, dass in Bezug auf die Art des Fundamentbodens (grobkörnig) die Ablagerungen unmittelbar und nicht zeitverzögert erfolgen.

#### 8.1.1 Ergebnisse des Schnitts 1

Abschnitt 1 ist der nördlichste der analysierten Abschnitte. Der Platz, der für die Lagerung der verwendet wird, befindet sich etwa 30 Meter vom Fuß der Halde entfernt, während sich die Achse des nächsten Gleises etwa 100 Meter entfernt befindet. Die Analysen gingen von einer Höhe des in einer Tiefe von etwa 2,7 m über aus. Die Zahlenwerte der eingegebenen Parameter sind in Anlage 3 dargestellt.

Mit Verweis auf Anhang 3 für eine detaillierte Auflistung der und der Ergebnisse, variiert die maximale Setzung bei maximaler Höhe der zwischen einem Wert von ca. 400 cm.

#### 8.1 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE DI ESERCIZIO

Di seguito sono riportati i risultati relativi alle analisi condotte allo SLE. Si evidenzia che in relazione alla tipologia di terreno di fondazione (a grana grossa) i cedimenti saranno di tipo immediato e non differiti nel tempo e avverranno quindi durante la costruzione del deposito stesso.

#### 8.1.1 Risultati sezione 1

La sezione 1 è la sezione più a nord tra quelle analizzate. Il piazzale che sarà utilizzato per lo stoccaggio dei conci si trova a circa 30 metri dal piede del cumulo mentre l'asse del binario più vicino si trova a circa 100 metri. Nelle analisi si è assunta una quota della falda ad una profondità di circa 2,7 m da piano campagna. I valori numerici dei parametri geotecnici di input sono riportati in Appendice 3.

Rimandando all'Appendice 3 per il dettaglio dei dati di input e dei risultati, il cedimento massimo con configurazione con la massima altezza del deposito è di circa 400 cm.



Abbildung 22. Bewertung der Setzungen für den Schnitt 1

Figura 22. Valutazione dei cedimenti per la sezione 1

Betreffend die Plastifizierung wird im Fall F1 darauf hingewiesen, dass der gesamte Bereich der ehemaligen Gruben plastifiziert und die zentrale Plastifizierung der Materialdeponie sich bedeutsam ausbreitet. Per quanto riguarda le plasticizzazioni si evidenzia che per il caso F1, il settore delle ex-cave risulta interamente plasticizzato e la plasticizzazione nel deposito si estende in modo significativo nell'intero deposito.



Abbildung 23. Plastifizierung Schnitt 1

Die folgende Abbildung zeigt den Trend der vertikalen Besiedlung auf Höhe des aktuellen Bodenniveaus.

Hervorzuheben ist, dass sich die größten vertikalen Setzungen auf der Pflanzenseite entwickeln und etwa 100 m vom Pfahlfuß entfernt vollständig enden. Figura 23. Plasticizzazione sezione 1

Nella figura seguente viene riportato l'andamento del cedimento verticale a livello di fondazione del rilevato.

Si mette in evidenza che i cedimenti verticali maggiori si sviluppano lato impianto, andando ad esaurirsi completamente a circa 100m dal piede del cumulo.

In einer Entfernung von 35 m kommt es weniger als 5 cm.

A distanza di 35m si hanno cedimenti inferiori a 5cm.



Abbildung 24. Setzungen für den Schnitt 1

Figura 24. Cedimenti sezione 1

#### 8.1.2 Ergebnisse des Schnitts 2

Abschnitt 2 ist der zentrale Abschnitt unter den analysierten. Die Segment-Vorfertigungsanlage befindet sich etwa 160 Meter vom Pfahlfuß entfernt. Die Analysen gingen von einer Höhe des Grundwasserspiegels in einer Tiefe von etwa 2,7 m über aus. Die Zahlenwerte der eingegebenen geotechnischen Parameter sind in Anlage 4 dargestellt.

Mit Verweis auf Anhang 4 für eine detaillierte Auflistung der und der Ergebnisse, variiert die maximale Setzung bei maximaler Höhe der zwischen einem Wert von ca. 492 cm.

#### 8.1.2 Risultati sezione 2

La sezione 2 è la sezione centrale tra quelle analizzate. L'impianto di prefabbricazione dei conci si trova a circa 160 metri dal piede del cumulo. Nelle analisi si è assunta una quota della falda ad una profondità di circa 2,7 m da piano campagna. I valori numerici dei parametri geotecnici di input sono riportati in Appendice 4.

Rimandando all'Appendice 4 per il dettaglio dei dati di input e dei risultati, il cedimento massimo con configurazione con la massima altezza del deposito è di circa 492 cm.



Abbildung 25. Bewertung der Setzungen für den Schnitt 2

Figura 25. Valutazione dei cedimenti per la sezione 2

Betreffend die Plastifizierung wird im Fall F1 darauf hingewiesen, dass der gesamte Bereich der ehemaligen Gruben plastifiziert und die zentrale Plastifizierung der Materialdeponie sich bedeutsam ausbreitet. Per quanto riguarda le plasticizzazioni si evidenzia che per il caso F1, il settore delle ex-cave risulta interamente plasticizzato e la plasticizzazione nel deposito si estende in modo significativo nell'intero deposito.



Abbildung 26. Plastifizierung Schnitt 2

Die folgende Abbildung zeigt den Trend der vertikalen Besiedlung auf Höhe des aktuellen Bodenniveaus.

Hervorzuheben ist, dass sich die größten vertikalen Setzungen auf der Pflanzenseite entwickeln und etwa 50 m vom Pfahlfuß entfernt vollständig enden. Figura 26. Plasticizzazione sezione 2

Nella figura seguente viene riportato l'andamento del cedimento verticale a livello di fondazione del rilevato.

Si mette in evidenza che i cedimenti verticali maggiori si sviluppano lato impianto, andando ad esaurirsi completamente a circa 50m dal piede del cumulo.

In einer Entfernung von 15 m kommt es weniger als 5 cm.

A distanza di 15m si hanno cedimenti inferiori a 5cm.



Abbildung 27. Setzungen für den Schnitt 2

Figura 27. Cedimenti sezione 2

Die Siedlungen unterhalb der Halde sind sowohl aufgrund ihrer hohen Höhe als auch aufgrund der sehr vorsichtigen Eigenschaften, mit denen die Befüllung der vorhandenen Steinbrüche modelliert wird, von großer Bedeutung.

Diese Ausfälle sind kein Hinweis auf ein Problem mit der Stabilität der Halden und beeinträchtigen nicht die Funktionalität der Vorfertigungsanlage, die in Kapitel 8.1.4 ausführlich analysiert wird.

#### 8.1.3 Ergebnisse des Schnitts 3

Abschnitt 3 ist der südlichste der untersuchten Abschnitte. Die Berechnungen gingen von einer Höhe des Grundwasserspiegels gleich der Geländeoberkante am Fuß der Böschung aus. Die Zahlenwerte der eingegebenen geotechnischen Parameter sind in Anlage 5 dargestellt.

Mit Verweis auf Anhang 5 für eine detaillierte Auflistung der Eingabedaten und der, variiert die maximale Setzung bei maximaler Höhe der zwischen einem Wert von ca. 324 cm. I cedimenti al di sotto del cumulo risultano essere molto rilevanti sia a causa dell'elevata altezza dello stesso che delle proprietà molto cautelative con le quali viene modellato il riempimento delle cave esistenti.

Tali cedimenti non sono comumque indice di un problema della stabiltià dei cumuli e non compromettono la funzionalità dell'impianto di prefabbricazione che verrà analizzata in dettaglio nel capitolo 8.1.4.

#### 8.1.3 Risultati sezione 3

La sezione 3 è la sezione più a sud tra quelle analizzate. Nelle analisi si è assunta una quota della falda pari a quella del piano campagna in corrispondenza del piede del rilevato. I valori numerici dei parametri geotecnici di input sono riportati in Appendice 5.

Rimandando all'Appendice 5 per il dettaglio dei dati di input e dei risultati, il cedimento massimo con configurazione con la massima altezza del deposito è di circa 324 cm.



Abbildung 28. Bewertung der Setzungen für den Schnitt 3

Figura 28. Valutazione dei cedimenti per la sezione 3

Betreffend die Plastifizierung wird im Fall F1 darauf hingewiesen, dass der gesamte Bereich der ehemaligen Gruben plastifiziert und die zentrale Plastifizierung der Materialdeponie sich bedeutsam ausbreitet. Per quanto riguarda le plasticizzazioni si evidenzia che per il caso F1, il settore delle ex-cave risulta interamente plasticizzato e la plasticizzazione nel deposito si estende in modo significativo nell'intero deposito.



Abbildung 29. Plastifizierung Schnitt 3

Figura 29. Plasticizzazione sezione 3

Die folgende Abbildung zeigt den Trend der vertikalen Besiedlung auf Höhe des aktuellen Bodenniveaus.

Es wird hervorgehoben, dass die größten vertikalen Setzungen an der Seite der Baustelle entstehen und etwa 100 m vom Fuß des Pfahls entfernt vollständig enden.

Auf der Eisackseite enden die Siedlungen etwa 60 m vom Pfahl entfernt, in 25 m Entfernung unter 5 cm auf.

Nella figura seguente viene riportato l'andamento del cedimento verticale a livello di fondazione del rilevato.

Si mette in evidenza che i cedimenti verticali maggiori si sviluppano lato pista di cantiere, andando ad esaurirsi completamente a circa 100m dal piede del cumulo.

Lato fiume Isarco i cedimenti si esauriscono a circa 60 m dal cumulo, a distanza di 25m mostrano valori inferiori a 5cm.



Abbildung 30. Setzungen für den Schnitt 3

Figura 30. Cedimenti sezione 3

Die Siedlungen unterhalb der Halde sind sowohl aufgrund ihrer hohen Höhe als auch aufgrund der sehr vorsichtigen Eigenschaften, mit denen die Befüllung der vorhandenen Steinbrüche modelliert wird, von großer Bedeutung.

## 8.1.4 Analyse Auswirkungen auf die Vorfertigungsanlage der Segmente und relativen Quadrats

Die nunmehr konsolidierte Methodik zur Bestimmung des Ausmaßes potenzieller Schäden an Gebäuden erfordert die Definition einer Reihe repräsentativer Größen durch numerische Bewertungen oder basierend auf empirischen Formulierungen, die mit Grenzwerten verglichen werden, die das Ausmaß der Schäden definieren.

Die Analyse zielt daher darauf ab, durch die Wechselwirkung zwischen dem Bauwerk und dem Boden die Elemente bereitzustellen, die für die Bewertung der Auswirkungen der Ausgrabung auf die Artefakte in Bezug auf Verschiebungen, Verformungen und möglicherweise Spannungen auf die Bauwerkselemente erforderlich sind.

In diesem Fall wurde die Analyse unter Freifeldbedingungen durchgeführt, ohne das Vorhandensein der zu bauenden Strukturen.

Auf diese Weise sind die erhaltenen Verschiebungen und Verzerrungen größer als in dem Fall, in dem auch die Strukturen modelliert werden, die aufgrund ihrer Steifigkeit die Siedlungen reduzieren und umverteilen.

Die Analyse der Folgemaßnahmen bezog sich auf die vorläufigen Schätzungen zu den Auswirkungen der Ansammlung von Ablagerungen auf die Vorfeldstrukturen.

In der Analysemethode für die Grenzzustände des Betriebs schlagen die Normen zulässige Werte für die häufigsten Parameter zur Ermittlung des Verformungszustands vor, um festzustellen, welchen möglichen Schäden ein Gebäude ausgesetzt ist. Darüber hinaus gibt es eine aussagekräftige bibliografische Dokumentation zu diesem Thema, anhand derer wir anhand von experimentellen Beobachtungen und Feldversuchen die Schadenskategorien bestimmen können, die durch charakteristische Werte der Identifikationsparameter des induzierten Verformungszustands abgegrenzt sind, wie im folgenden Diagramm dargestellt.

I cedimenti al di sotto del cumulo risultano essere molto rilevanti sia a causa dell'elevata altezza dello stesso che delle proprietà molto cautelative con le quali viene modellato il riempimento delle cave esistenti.

## 8.1.4 Analisi degli effetti indotti sull'impianto di prefabbricazione dei conci e relativo piazzale

La metodologia oramai consolidata per la definizione del livello di danneggiamento potenziale di edifici prevede la definizione, attraverso valutazioni numeriche o basate su formulazioni empiriche, di una serie di grandezze rappresentative che vengono confrontate con valori limiti che ne definiscono il livello di danneggiamento.

L'analisi, attraverso l'interazione fra struttura e terreno, ha dunque lo scopo di fornire gli elementi necessari alla valutazione degli effetti dello scavo sui manufatti, in termini di spostamenti, deformazioni ed eventualmente di sollecitazioni sugli elementi strutturali.

In questo caso l'analisi è stata effettuata in condizioni free field, senza tener conto della presenza delle strutture che saranno realizzate.

Procedendo in questo modo gli spostamenti e le distorsioni che si ottengono sono maggiori rispetto al caso in cui vengano modellate anche le strutture che grazie alla loro rigidezza vanno a ridurre e ridistribuire i cedimenti.

Le analisi di danno di seguito riportate forniscono delle valutazioni in merito agli effetti prodotti dai cumuli di deposito sulle strutture del piazzale.

Nella metodologia di analisi agli stati limite di esercizio, al fine di stabilire il potenziale danneggiamento cui è sottoposto un fabbricato, le norme propongono dei valori ammissibili relativi ai più comuni parametri d'identificazione dello stato deformativo. Risulta inoltre presente una significativa documentazione bibliografica sull'argomento che permette di determinare, sulla base di osservazioni sperimentali ed esperienze condotte sul campo, delle categorie di danno delimitate da valori caratteristici dei parametri identificativi dello stato deformativo indotto, come riportato nello schema seguente.



Abbildung 31. Zulässige Durchbiegungsgrenzen für verschiedene Figura 31. Limiti ammissibili della inflessione per varie strutture Strukturen

Es muss hervorgehoben werden, dass das Versagen an sich keine Ursache für Schäden an den Bauwerken ist und daher nicht als wirksames Maß für den potenziellen Schaden angesehen werden kann. Es müssen jedoch auch Beurteilungen in Bezug auf eine Reihe anderer Parameter durchgeführt werden.

Bei gerahmten Strukturen sind die wichtigsten Parameter die Winkelverformung der Siedlungskurve  $\beta$ . Bei Werten von 1 / <1/300 treten keine Risse in den Füllstrukturen auf, bei> 1/150 können die tragenden Betonstrukturen beschädigt werden.

In dieser Hinsicht zeigen Skempton und MacDonald (1956), die auf der Beobachtung von 98 Gebäuden und unter Bezugnahme auf die Studie von Ricceri und Sorazo (1985) über 25 in Italien gebaute Bauwerke beruhen, dass dies nicht der Fall ist es treten Risse an den Füllungsstrukturen bis zu 1 / <1/300 auf, und um Schäden an den tragenden Betonstrukturen zu erkennen, müssen  $\beta$ -Werte von 1/150 erreicht werden.

Eurocode 7 für geotechnische Arbeiten gibt die zulässigen Werte der vorsorglichen Winkelverformung an, die 1/500 für Stahlbetonrahmenkonstruktionen mit Verkleidung und 1/200 für offene Rahmen entsprechen.

Bjerrum (1963) hob hervor, wie die Variable, die das Verformungsphänomen steuert, zur Winkelverzerrung führt, und hat die Art der Beschädigung mit den Werten dieses Parameters in Verbindung gebracht.

È necessario evidenziare come il cedimento in sé non è causa di danno alle strutture, e pertanto non può essere considerato una misura efficace del potenziale danneggiamento, ma sarà necessario effettuare altresì valutazioni relative ad una serie di altri parametri.

Per strutture intelaiate i più importanti parametri risultano essere la deformazione angolare della curva  $\beta$  dei cedimenti. Per valori di  $\beta$  < 1/300 non si ha comparsa di fessure nelle strutture di tamponamento mentre per  $\beta$ >1/150 si possono riscontrare danni alle strutture portanti in calcestruzzo.

Al riguardo, facendo riferimento alla bibliografia esistente sull'argomento, Skempton e MacDonald (1956), basandosi sull'osservazione di 98 edifici e con riferimento anche allo studio di Ricceri e Sorazo (1985) su 25 strutture realizzate in Italia, evidenziano che non si ha comparsa di fessure sulle strutture di tamponamento fino a valori di  $\beta$ < 1/300 e per vedere danni sulle strutture portanti in calcestruzzo è necessario arrivare a valori di  $\beta$  pari a 1/150.

L'Eurocodice 7 per le opere di ingegneria geotecnica indica valori ammissibili della deformazione angolare maggiormente cautelativi, pari a 1/500 per strutture a telaio in calcestruzzo armato con tamponature e 1/200 per i telai aperti.

Bjerrum (1963) ha evidenziato come la variabile che governa il fenomeno deformativo risulti la distorsione angolare, ed ha associato la tipologia di danneggiamento ai valori di tale parametro.

| Angular distortion | Damage assessment                                                                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/100              | Limit where structural damage is to be feared. Safe limit for flexible brick walls with h/L<0.25. Considerble cracking in panel walls and brick walls |
| 1/250              | Limit where tilting of high rigid buildings may become visible                                                                                        |
| 1/300              | Limit where difficulties with overhead cranes can be expected                                                                                         |
| 1/500              | Safe limits for bildings where cracking are not permissible                                                                                           |
| 1/600              | Danger limit for frame with diagonals                                                                                                                 |
| 1/750              | Lower limit for sensitive machinery                                                                                                                   |

Abbildung 32. Typische Werte von Winkelverzerrungen in Bezug auf den Grad der möglichen Beschädigung eines Gebäudes (Bjerrum, 1963) Figura 32. Valori tipici delle distorsioni angolari in relazione al grado di potenziale danneggiamento di un edificio (Bjerrum, 1963)

Nachfolgend sind die Fehler aufgeführt, die in den drei Analysen festgestellt wurden, die zur Beurteilung des Betriebsgrenzzustands der Vorfertigungsanlage für Quader und Vorplatz durchgeführt wurden. Vengono di seguito riportati gli spostamenti ed i cedimenti ottenuti dalle analisi numeriche svolte con il fine di valutare lo stato limite di esercizio dell'impianto di prefabbricazione dei conci e del piazzale antistante.

Der maximale Fehler, der in einer Entfernung von 10 m vom Fuß des Haufens erwartet wird, liegt in der von 5,4 cm. Il cedimento massimo atteso ad una distanza di 10 m dal piede del cumulo è nell'ordine di 5,4 cm.



Abbildung 33. Induzierte Siedlungen auf dem Vorfeld (sektion 1-1)

Figura 33. Spostamenti verticali al temrine della costruzione del rilevato (sezione 1-1)



Abbildung 34. Induzierte Siedlungen auf dem Vorfeld (sektion 1-1)

Figura 34. Spostamenti orizzontali al termine della costruzione del rielvato (sezione 1-1)



Abbildung 35. Induzierte Siedlungen auf dem Vorfeld (sektion 1-1)

Die horizontalen Verschiebungen, die durch die Konstruktion der Haufen verursacht werden, sind in der folgenden Grafik dargestellt.

Figura 35. Cedimenti indotti sul piazzale (sezione 1-1)

Gli spostamenti orizzontali indotti dalla costruzione dei cumuli sono riportati nel grafico seguente.



#### Abbildung 36. Induzierte horizontale Verschiebungen auf dem Vorfeld (sektion 1-1)

Die folgende Grafik zeigt die Winkelverzerrung auf Bodenniveau unter Freifeldbedingungen.

Zusätzlich zu den erzielten Ergebnissen werden 2 Schwellenwerte definiert, die (in Übereinstimmung mit Bjerrum) 2 Grenzwerte definieren, über die hinaus:

- Es besteht die Möglichkeit von Problemen mit den Brückenkranen (β> 1/300).
- In den Füllelementen können sich Risse bilden (β> 1/500).

Figura 36. Spostamenti orizzontali indotti sul piazzale (sezione 1-1)

Il grafico seguente riporta invece la distorsione angolare a livello del piano campagna in condizioni free field.

Oltre ai risultati ottenuti sono riportati 2 livelli di soglia che definiscono 2 limiti (in accordo con Bjerrum) oltre i quali:

- Si ha la possibilità di avere delle problematiche con i carriponte (β >1/300).
  - Si ha la possibilità di formazione di fessure negli elementi di tamponatura (β >1/500).



\_

Aus der oben gezeigten Grafik ist ersichtlich, dass keine besonderen Probleme an den Bauwerken zu erwarten sind, die aufgrund der durch die Pfähle verursachten Ansiedlungen entstehen.

Aus einer Entfernung von 20 m zum Haufenfuß können Schäden jeglicher Art ausgeschlossen werden, auch an zu installierenden Füllelementen.

Die folgende Abbildung zeigt detailliert die Situation der erwarteten Ausfälle an der dem Pfahl an der nächsten gelegenen Strecke. \_\_\_\_\_

Figura 37. Distorsioni indotte sul piazzale

Dal grafico riportato sopra si può vedere come non si attendano particolari problematiche sulle strutture realizzate dovute ai cedimenti indotti dai cumuli.

E' inoltrepossibile escludere qualsiasi tipo di danno anche sugli eventuali elementi di tamponatura che verranno installati.

Nella figura seguente viene riportata in dettaglio la situazione dei cedimenti attesi in corrispondenza del binario più vicino al cumulo.



Abbildung 38. Induzierte Siedlungen auf den Gleisen

Die klassischen Prüfungen der Gleisqualitätsparameter sind in diesem Fall nicht anwendbar und umfassen Prüfungen des Überhöhungsfehlers, des Überhöhungsfehlers und des Längsfehlers.

Im Untersuchungsgebiet werden die für die Materialversorgung eingesetzten Züge eine sehr begrenzte Geschwindigkeit haben: Die Haufen befinden sich am Ende der Eisenbahnlinien.

Es ist jedoch sofort ersichtlich, dass die zu erwartenden Ausfälle besonders eingeschränkte Werte haben.

Der Überhöhungsfehler, der bei induzierten Ausfällen zwischen den beiden Schienen des Gleises entsteht, als der 90-cm-Achsabstand betrachtet, beträgt weniger als 1 mm. Figura 38. Cedimenti indotti sui binari

Non sono applicabili a questo caso le classiche verifiche sui parametri di qualità del binario che prevedono dei controlli sul difetto di sopraelevazione, sullo sghembo e sul livello longitudinale.

Nell'area in esame i treni adibiti all'approvvigionamento del materiale hanno infatti una velocità molto limitata: i cumuli sono in corrispondenza del capolinea delle linee ferroviarie.

Risulta comunque immediatamente evidente che i cedimenti attesi hanno dei valori particolarmente limitati.

Il difetto di sopraelevazione che si viene a creare tra le due rotaie del binario per i cedimenti indotti, considerato l'interasse di 90 cm, è minore di 1 mm. Auf den Gleisen ist keine instrumentelle Überwachung vorgesehen.

Sie müssen in jedem Fall visuell überprüft werden und müssen möglicherweise lokal verstaut werden, um die induzierten Verformungen zu korrigieren.

#### Analyse der Auswirkungen auf bestehende 815 Gebäude (Maso Sossai)

Die vorliegende Analyse bezieht sich speziell auf die Bewertung möglicher Auswirkungen, die im Stall und in der Obstlagerstätte südlich des Baugebiets verursacht werden.

Diese Überlegungen betreffen nicht das Haus und die Kirche in der Gegend, da sie aufgrund der größeren Entfernung von den Haufen vernachlässigbaren Auswirkungen unterliegen.

Die folgende Abbildung zeigt die analysierten Gebäude im Detail.

Non viene previsto alcun monitoraggio strumentale sui binari.

Essi devono comunque essere controllati visivamente e eventualmente dovranno essere localmente rincalzati al fine di correggere le deformazioni indotte.

#### 8.1.5 Analisi degli effetti indotti sugli edifici esistenti (Maso Sossai)

La presente analisi è riferita nello specifico alla valutazione di possibili effetti indotti al fienile e al deposito frutta posti a sud dell'area di cantiere.

Tali considerazioni non riguardano invece l'abitazione e la chiesa che si trovano nella zona in quanto, vista la distanza maggiore a circa 60m dal piede dei cumuli, essi subiscono degli effetti del tutto trascurabili.

Nella figura seguente sono evidenziati in dettaglio gli edifici oggetto dell'analisi.



(Scheune und Lagerung)

Figura 39. Planimetria di dettaglio dell'area degli edifici esistenti (fienile e deposito)

Nachfolgend sind die Fehler aufgeführt, die bei der Analyse 1 mit dem Ziel der Beurteilung des Betriebsgrenzzustands des vorhandenen Gebäudes festgestellt wurden.

Auch in diesem Fall wird der wahrscheinlichste Zustand in der Konfiguration der Haufen in Phase mit der maximalen eingelagerten Materialmenge ist.

Das Gebäude befindet sich etwa 30 m vom Fuß des Hügels entfernt. Bei den Analysen wird von einer Gebäudeausdehnung von 37 m ausgegangen. Vengono di seguito riportati i cedimenti che sono stati ottenuti nell'analisi sezione 1 svolta con il fine di valutare lo stato limite di esercizio dell'edificio esistente.

Anche per questo caso la condizione più probante è identificata nella configurazione con il quantitativo massimo di materiale in deposito.

L'edificio si trova a circa 30 m dal piede del cumulo. Nelle analisi si assume che il fabbricato abbia una estensione pari a 37 m.





Figura 40. Cedimenti indotti edificio esistente

Generell zeigt sich, dass die Ausfälle besonders begrenzt sind.

particolarmente limitati.

In generale si può notare come i cedimenti siano

Das Folgende sind Winkelverzerrungen und horizontale Di segui Verformungen.

Di seguito si riportano gli spostamenti orizzontali.





Abbildung 41. Induzierte horizontale Verschiebung des vorhandenen Gebäudes

Figura 41. Spostamenti orizzontali indotti edificio esistente

Im Allgemeinen ist zu sehen, wie stark die Winkelverzerrung in jedem Fall ist, und die horizontale Verformung, die durch die Konstruktion des Haufens verursacht wird, bewirkt eine Kompression auf dem Niveau der Landschaft, auf der sich das Gebäude befindet. Dieses Verhalten des Baugrundes ist sicherheitsfördernd, so dass horizontale Verschiebungen bei der Abschätzung der Gesamtverformungen vernachlässigt werden.

Das Folgende ist eine Schätzung der unterschiedlichen vertikalen Verschiebungen, die den Hof am Ende der letzten Bauphase des Damms betreffen. Der Hof hat einen Mindestabstand von ca. 30m am Fuße der Böschung. Die Siedlung wurde entlang Abschnitt 1-1 bewertet, der die Farm auf einer Länge von 37 m schneidet.

Differenzausgleich ist:

 $\Delta = 69,09 - 30,90 = 38,15 \text{ mm}$ 

In generale si può notare come il livello di distorsione angolare sia comunque contenuto e la deformazione orizzontale causata dalla costruzione del cumulo causi una compressione a livello del piano campagna dove si trova l'edificio.

Questo comportamento del terreno risulta a favore di sicurezza, per cui nella stima delle deformazioni totali gli spostamenti orizzontali verranno trascurati.

Di seguito si riporta la stima degli spostamenti verticali differenziali che interessano il maso al termine della fase finale costruttiva del rilevato di abbancamento. Il maso ha una distanza minima al piede del rilevato di circa 30m. il cedimento è stato valutato lungo la sezione 1-1 la quale taglia il maso per una lunghezza pari a 37m.

Il cedimento differenziale è:

 $\Delta$  = 69,09 - 30,90 = 38,15 mm



Abbildung 42. Analyse des Schadenspotentials in Übereinstimmung mit Boscardin und Cording (1989)

Die Schadensanalyse wurde unter Berücksichtigung der kombinierten Wirkungen durch vertikale und horizontale Setzungen durchgeführt. Die Analysen werden mit dem Schema des Ersatzträgers durchgeführt. Das Gebäude ist tatsächlich als einfacher elastischer und gewichtsloser Balken mit einer Höhe H und einer Länge L gleich denen des analysierten Gebäudes schematisiert (Burland, 1997).

Es wird davon ausgegangen, dass die Definition der induzierten Verformungen dem Träger, der dem Gebäude entspricht, das gleiche verformte "grüne Feld" verleiht. Wir befinden uns daher im vorliegenden Fall in der Konfiguration der Konkavität nach unten, für den "Hogging-Bereich", Strukturen, die auf Zug beansprucht werden.



Figura 42. Analisi del potenziale di danno in accorrdo con le zone di Hogging e Sagging

L'analisi di danno è stata condotta considerando gli effetti combinati dovuti ai cedimenti verticali ed orizzontali. Le analisi sono svolte con lo schema della trave equivalente. Il fabbricato viene schematizzato infatti come semplice trave elastica e priva di peso avente altezza H e lunghezza L pari a quella dell'edificio analizzato (Burland, 1997).

Per la definizione delle deformazioni indotte si considera di imprimere alla trave equivalente all'edificio la stessa deformata "green field". Siamo quindi nel caso in oggetto nella configurazione di concavità verso il basso per cui "hogging region", strutture sottoposte a trazione.



Abbildung 43. Grenzbereich der Farm "Hogging region"

Figura 43. Zona limite del maso "Hogging region"

Die Biege- und Schubdehnungen können nach folgenden Beziehungen bestimmt werden:

Le deformazioni flessionale e di taglio possono essere determinate secondo le seguenti relazioni:

$$\varepsilon_f = \frac{\Delta/L_i}{\left[\frac{L_i}{12t} + \frac{3I}{2tL_iH} * \frac{E}{G}\right]}$$

$$\varepsilon_t = \frac{\Delta/L_i}{\left[1 + \frac{HL_i^2}{18I} * \frac{G}{E}\right]}$$

Dove:

Wo ist es:

Gebäudelänge Li = 37,00 m li = 37.00 mLunghezza edificio Durchbiegungsverhältnis ⊔ / Li = 0,00010 m  $\Delta/Li = 0.00010 \text{ m}$ Rapporto di inflessione Altezza edificio H = 6.00 mGebäudehöhe H = 6,00 m Trägheitsmodul I = H<sup>3</sup> / 12 (Durchhängen) = 18 m<sup>3</sup> Modulo di inerzia  $I = H^{3}/12$  (sagging) = 18 m<sup>3</sup>  $I = H^3 / 3$  (Zerspanung) = 72 m<sup>3</sup>  $I = H^{3}/3$  (hogging) = 72 m<sup>3</sup> Längs- / Tangentialmodul E / G: Modulo longitudinale / tangenziale E/G: 2.6 Mauerwerk 2.6 muratura 12.5 Beton 12.5 calcestruzzo Neutraler Achsabstand t = H / 2 (Durchhängen) = 3 m Distanza asse neutro t = H/2 (sagging) = 3 m t = H (Zerspanung) = 6 m t = H (hogging) = 6 m

Aus der Analyse der Fließkurve haben wir die Hogging-Zone, für die die berechneten Verformungen gleich sind:

Biegeverformungen eps f = 0,00013556

Querverformungen eps t = 0,00002858

Zusätzlich zu diesen Verformungen müssen die Auswirkungen der horizontalen Verformungen des Bodens berücksichtigt werden, die sich aus der folgenden Gleichung ergeben:

Dall'analisi della curva dei cedimenti si ha la zona di Hogging, per cui le deformazioni calcolate sono pari a:

| Deformazioni flessionali | eps f = 0.00013556 |
|--------------------------|--------------------|
| Deformazioni trasversali | eps t = 0.00002858 |

Oltre a queste deformazioni, si deve tener conto degli effetti delle deformazioni orizzontali del terreno, ricavabili dalla seguente equazione:

$$\varepsilon_y = \frac{\Delta S_h}{L_i}$$

Wo ist es:

Differentialverschiebung horiz. dSch = 0,02813 m

Gebäudelänge Li = 37,00 m

Betrachtet man die Setzung in einem bestimmten Abstand von der y-Achse, so ist die horizontale Verformung gleich:

Horizontale Verformungen eps y = 0,00076016

Die horizontalen Verformungen ⊔y werden vorsichtshalber vernachlässigt, da sie zugunsten der Sicherheit wirken. Das Modell zeigt, dass die horizontalen Verschiebungsvektoren,

Dove: Differenziale Spost. orizz.  $\Delta$ Sh = 0,02813 m Lunghezza edificio Li = 37.00 m Considerando il cedimento posto ad una certa distanza dall'asse y, la deformazione orizzontale è pari a:

Deformazioni orizzontali

eps y = 0.00076016

In via cautelativa le deformazioni orizzontali ey vengono trascurate, in quanto il loro effetto è a favore di sicurezza. Dal modello si evince come i vettori di spostamento

die das Gebäude schneiden, die gleiche Richtung, aber abnehmende Intensität haben, aus diesem Grund würde jede Verschiebung des Gebäudes das Fundament verdichten. orizzontale che intercettano il fabbricato, hanno stessa direzione ma intensità decrescente, per questo motivo un eventuale spostamento del fabbricato andrebbe a compattare la fondazione.

Die Verformungsfelder setzen sich daher nach folgenden Gleichungen zusammen:

I campi di deformazione vengono pertanto composti secondo le seguenti equazioni:

$$\varepsilon_{totale} = \varepsilon_y + \varepsilon_f = \varepsilon_f$$

$$\varepsilon_{totale} = 0.35 * \varepsilon_y + \left[ \left( 0.65 * \varepsilon_f \right)^2 + \varepsilon_t^2 \right]^{0.5} = \left[ \left( 0.65 * \varepsilon_f \right)^2 + \varepsilon_t^2 \right]^{0.5}$$
Def. Gesamt eps tot = 0,014 % Biegung Def. Totali eps tot = 0.014% a flessione Def. Insgesamt eps tot = 0,003 % pro Schnitt Def. Totali eps tot = 0.003% a taglio

Mit diesen beiden Parametern können wir die Schadenskategorien von Gebäuden definieren.

Das an den Bauwerken induzierte Schadensklassifizierungssystem basiert auf der "Reparaturfreundlichkeit" unter Berücksichtigung einiger Aspekte wie Rissöffnung, Neigung, Leitungsschäden.

Diesem Klassifikationssystem, bestehend aus sechs Schadensklassen (von 0 bis 5), entsprechen Boscardin und Cording (1989) die in den folgenden Tabellen angegebenen und beschriebenen Zugdehnungsgrenzwerte. Con questi due parametri possiamo definire le categorie di danno degli edifici.

Il sistema di classificazione del danno indotto sulle strutture è basato sulla "facilità di riparazione", prendendo in considerazione alcuni aspetti quali l'apertura delle fessure, l'inclinazione, i danni ai servizi.

A tale sistema di classificazione, composto da sei classi di danno (da 0 a 5), Boscardin e Cording (1989) fanno corrispondere dei valori limite di deformazione a trazione, riportati e descritti nelle seguenti tabelle.

| Categoria<br>di danno | Intensità di<br>danno | Deformazione<br>limite (%) | Descrizione                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                     | Trascurabile          | 0.00 - 0.05                | Fessure capillari con apertura < 0.1 mm                                                                                                                                                                                                                                                                                                                                  |
| 1                     | Molto Lieve           | 0.05 – 0.075               | Fessure sottili cui si rimedia facilmente con lavori di tinteggiatura. Il<br>danno in genere è limitato agli intonaci delle pareti interne. Fessure<br>alle pareti esterne rilevabili con attento esame. Tipica apertura delle<br>lesioni < 1 mm                                                                                                                         |
| 2                     | Lieve                 | 0.075 – 0.15               | Fessure facilmente stuccabili, tinteggiatura necessaria. Le fessure<br>ricorrenti possono essere mascherate con opportuni rivestimenti.<br>Fessure visibili anche all'esterno: può essere necessaria qualche<br>ripresa della stillatura per garantire l'impermeabilità. Possibili difficoltà<br>nell'apertura di porte e finestre. Tipica apertura delle lesioni < 5 mm |
| 3                     | Moderata              | 0.15 – 0.30                | Le fessure richiedono cuci e scuci della muratura. Anche all'esterno<br>sono necessari interventi sulla muratura. Possibile blocco di porte e<br>finestre. Rottura di tubazioni. Spesso l'impermeabilità non è garantita.<br>Tipica apertura delle lesioni 5 - 15 mm oppure numero elevato di<br>lesioni con apertura < 3 mm                                             |
| 4                     | Severa                | > 0.3                      | Necessarie importanti riparazioni, compresa demolizione e<br>ricostruzione di parti di muri, specie al di sopra di porte e di finestre. I<br>telai di porte e di finestre si distorcono: percepibile pendenza dei<br>pavimenti. Muri inclinati o spanciati; qualche perdita d'appoggio di                                                                                |

|   |                 |       | travi. Tubazioni distrutte. Tipica apertura delle lesioni 15 - 25 mm,<br>dipendente anche dal numero delle lesioni                                                                                                                                                                          |
|---|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Molto<br>Severa | > 0.5 | Richiesti importanti lavori con parziale o totale demolizione e<br>ricostruzione. Le travi perdono l'appoggio, i muri si inclinano<br>fortemente e richiedono puntellatura. Pericolo di instabilità. Tipica<br>apertura delle lesioni < 25 mm, dipendente anche dal numero delle<br>lesioni |

Abbildung 44. Beschreibung des Schadens und der damit verbundenen Auswirkungen

Figura 44. Categorie di danno e corrispondenti deformazioni limite (Boscardin e Cording, 1989) a cui sono associati descrizione dei danni e degli effetti associati

Wie oben festgestellt, können wir sagen, dass wir in die Schadenskategorie 0 – Vernachlässigbar fallen, da die berechnete maximale Gesamtverformung 0,014 % beträgt und im Bereich von 0,00–0,05 % der Schadenskategorie 0 liegt.

Es wird betont, dass die durchgeführten Analysen sehr vorsorglich sind und die ungünstigste Schadenskonfiguration darstellen, da das Vorhandensein von Fundamenten, die einen aussteifenden Beitrag zum Verformungsverhalten des Gebäudes liefern, nicht berücksichtigt wurde und dass die induzierten Verschiebungen und Verformungen die sind entsprechende auf die "grüne Wiese"-Bedingung.

Horizontale Verformungen wurden bei der Abschätzung der Gesamtverformungen ebenfalls vernachlässigt, da sie dazu neigen, das darüber liegende Gebäude zu verdichten und damit den Fundamenten ein sicherheitsrelevantes Druckverhalten zu verleihen. Per quanto sopra determinato possiamo affermare di rientrare nella categoria di danno 0 – Trascurabile in quanto la deformazione totale massima calcolata è pari a 0.014% e compresa nell'intervallo 0.00-0.05% della categoria di danno 0.

Si sottolinea come le analisi effettuate sono molto cautelative e rappresentano la peggiore configurazione di danno possibile in quanto non è stato tenuto conto della presenza delle fondazioni che forniscono un contributo irrigidente al comportamento deformativo dell'edificio e che gli spostamenti e le deformazioni indotte sono quelle corrispondenti alla condizione "green field".

Sono state inoltre trascurate le deformazioni orizzontali nella stima delle deformazioni totali in quanto hanno una tendenza a compattare l'edificio soprastante e quindi imprimono un comportamento a compressione nelle fondazioni che risulterebbe a favore di sicurezza.

## 8.2 ANALYSE DER ERGEBNISSE FÜR DIE LETZTEN GRENZSTAATEN

Die Ergebnisse zu den Berechnungsabschnitten 2 und 3, die aus Sicht der globalen Stabilität als die kritischsten angesehen werden, sind nachstehend aufgeführt.

#### 8.2.1 Ergebnisteil 1

Bei den Analysen des Abschnitts 1 wurde eine Höhe des Grundwasserspiegels in einer Tiefe von etwa 2,7 m über Geländeoberkante angenommen. Die numerischen Werte der eingegebenen geotechnischen Parameter sind in Anhang 6 (Plaxis) und in Anhang 7 und 8 (Folie) angegeben.

Die Analyse wurde durchgeführt, wobei die Bodenbeständigkeitswerte mit den M2-Parametern verringert wurden.

Die maximale Höhe der Böschung beträgt ca. 80 m und besteht aus Material des Typs B + C.

Die seismische Einwirkung in Plaxis wurde mit dem Verfahren "Pseudostatische Analyse" eingefügt, indem äquivalente statische Kräfte auf das gesamte Modell angewendet wurden. Die Erdbebenbeiwerte wurden gemäß den Bestimmungen der Technischen Regelwerke "Arbeiten in Schüttgütern und Baugrubenfronten" ermittelt. Die Werte der in den Analysen angenommenen seismischen Koeffizienten sind unten zusammengefasst.

 $kh = a_{max} * \beta = 0.034 * 0.38 = 0.013 \text{ g};$ 

kv = kh \* 0.5 = 0.013 \* 0.5 = 0.006 g.

Für die globale Stabilität des Abschnitts 1 beträgt der Mindestsicherheitsfaktor bei Erdbeben 1,16, was über dem gesetzlich festgelegten Mindestwert liegt. Anschließend wird die Gesamtstabilität der Lagerstätte überprüft.

## 8.2 ANALISI DEI RISULTATI RELATIVI AGLI STATI LIMITE ULTIMI

Vengono di seguito riportati i risultati relativi alle sezioni di calcolo 1, 2 e 3 considerate le più critiche dal punto di vista della stabilità globale.

#### 8.2.1 Risultati sezione 1

Nelle analisi della sezione 1 si è assunta una quota della falda ad una profondità di circa 2,7 m da piano campagna. I valori numerici dei paratri geotecnici di input sono riportati in Appendice 6 (Plaxis) e in Appendice 7 e 8 (Slide).

L'analisi agli elementi finiti (Plaxis) è stata effettuata con i valori di resistenza del terreno ridotti con i parametri M2.

L'altezza massima del rilevato è pari a circa 80 m ed è costituita da materiale di tipo B+C.

L'azione sismica in plaxis è stata inserita mediante la procedura "Pseudostatic analysis" applicando all'intero modello forze statiche equivalenti. I coefificienti sismici sono stati valutati in accordo con quanto prescito dalla normativa tecnica per le "Opere in materiali sciolti e fronti si scavo ". I valori dei coefficienti sismici adottati nelle analisi sono riassunti a seguire.

 $kh = a_{max} * \beta = 0.034 * 0.38 = 0.013 g;$ 

kv = kh \*0.5 = 0.013 \* 0.5 = 0.006 g.

Per la stabilità globale della sezione 1, il fattore di sicurezza minimo in presenza di sisma, è pari a 1.16 che è superiore al valore minimo imposto da normativa. La stabilità globale del deposito è quindi verificata.



Abbildung 45. Bewertung der Gesamtstandsicherheit für den Schnitt 3 (SRFmin = 1.16)

Figura 45. Fattore di riduzione dei parametri ottenuto tramite l'analisi SSR in condizioni statiche e in condizioni sismiche: sezione 1 (SRFmin = 1.16)



Abbildung 46. Bewertung der Gesamtstandsicherheit für den Schnitt 3 (SRFmin = 1.16)

Figura 46. Deformazioni deviatoriche al termine dell'analisi SSR in condizioni sismiche per la sezione 1 (SRFmin = 1.16) Il meccanismo di rottura è connesso alla stabilità del rilevato artificiale a progetto e non interessa i terreni di fondazione.

Der Brechmechanismus ist an die Stabilität der künstlichen Vermessung gekoppelt und beeinflusst den Baugrund nicht.

Unter Bruchbedingungen wird der größte Teil des die Böschung bildenden Materials plastifiziert.

In condizioni di rottura gran parte del materiale costituente il rilevato risulta plasticizzato.



Abbildung 47. Plastifizierung Schnitt B - Fall F1

Figura 47. Plasticizzazione sezione 3

Um die zuvor erhaltenen Werte für die Stabilität der Böschung mit der endgültigen Konfiguration der Lagerstätte zu bestätigen, wurde eine Stabilitätsanalyse mit der ULS-Grenzgleichgewichtsmethode unter Verwendung der Software SLIDE (Rocscience) durchgeführt.

Die Analyse wurde mit den Designparametern (M2) durchgeführt, wobei nach einem Reduktionskoeffizienten desselben gleich SRFmin = 1,1 gesucht wurde.

Analog zur Finite-Elemente-Analyse wurde die seismische Einwirkung mit dem pseudostatischen Ansatz berücksichtigt. Die angenommenen seismischen Koeffizienten sind die zuvor berichteten.

Die folgenden Abbildungen zeigen die kritischen Gleitflächen für den ULS und für den ULS.

Al fine di confermare i valori precedentemente ottenuti per la stabilità del pendio avente la configurazione definitiva del deposito, è stata condotta una analisi di stabilità con il metodo all'equilibrio limite allo SLU mediante il software SLIDE (Rocscience).

L'analisi è stata effettuata con i parametri di progetto (M2) ricercando un coefficiente di riduzione degli stessi pari a  $SRF_{min} = 1.1$ .

In analogia con quanto fatto nell'analisi agli elementi finiti l'azione sismcia è stata condiderata mediante l'approccio pseudo-statico. I coefficienti sismici adottati sono quelli riportati precedentemente.

Nelle figure a seguire si riportano rispettivamento per lo SLU e per lo SLV le superifci di scorrimento critiche.



Abbildung 49. Bewertung der globalen Stabilität unter seismischen Bedingungen (SLV) für Abschnitt 1 (SRFmin = 1,168)

Figura 49. Bewertung der globalen Stabilität unter seismischen Bedingungen (SLV) für Abschnitt 1 (SRFmin = 1,168)

#### 8.2.2 Ergebnisteil 2

Bei den Analysen des Abschnitts 2 wurde eine Höhe des Grundwasserspiegels in einer Tiefe von etwa 2,7 m über Geländeoberkante angenommen. Die numerischen Werte der eingegebenen geotechnischen Parameter sind in Anlage 9 (Plaxis) und in Anlage 10 und 11 (Folie) angegebe.

Die seismische Einwirkung in Plaxis wurde mit dem Verfahren "Pseudostatische Analyse" eingefügt, indem äquivalente statische Kräfte auf das gesamte Modell angewendet wurden. Die Erdbebenbeiwerte wurden gemäß den Bestimmungen der Technischen Regelwerke "Arbeiten in Schüttgütern und Baugrubenfronten" ermittelt. Die Werte der in den Analysen angenommenen seismischen Koeffizienten sind unten zusammengefasst.

$$\label{eq:kh} \begin{split} kh &= a_{max} \,\,^*\beta = 0.034 \,\,^* \, 0.38 = 0.013 \; g; \\ kv &= kh \,\,^* \! 0.5 = 0.013 \,\,^* \, 0.5 = 0.006 \; g. \end{split}$$

Für die Gesamtstabilität von Abschnitt 2 beträgt der Mindestsicherheitsfaktor unter statischen Bedingungen 1,104, was über dem von den Vorschriften festgelegten Mindestwert liegt. Anschließend wird die Gesamtstabilität der Lagerstätte überprüft.

#### 8.2.2 Risultati sezione 2

Nelle analisi della sezione 2 si è assunta una quota della falda ad una profondità di circa 2,7 m da piano campagna. I valori numerici dei parametri geotecnici di input sono riportati in Appendice 9 (Plaxis) e in Appendice 10 e 11 (Slide).

L'analisi agli elementi finiti (Plaxis) è stata effettuata con i valori di resistenza del terreno ridotti con i parametri M2

L'azione sismica in plaxis è stata inserita medoiante la procedura "Pseudostatic analysis" applicando all'intero modello forze statiche equivalenti. I coefificienti sismici sono stati valutati in accordo con quanto prescito dalla normativa tecnica per le "Opere in materiali sciolti e fronti si scavo ". I valori dei coefficienti sismici adottati nelle analisi sono riassunti a seguire.

$$\label{eq:kh} \begin{split} kh &= a_{max} \,\,^*\beta = 0.034 \,\,^* \, 0.38 = 0.013 \; g; \\ kv &= kh \,\,^* \! 0.5 = 0.013 \,\,^* \, 0.5 = 0.006 \; g. \end{split}$$

Per la stabilità globale della sezione 2, il fattore di sicurezza minimo in condizioni statiche, è pari a 1.104 che è superiore al valore minimo imposto da normativa. La stabilità globale del deposito è quindi verificata.



Abbildung 50. Parameterreduktionsfaktor, erhalten durch SSR-Analyse unter statischen Bedingungen und unter seismischen Bedingungen: Abschnitt 2 (SRFmin = 1,104)

Figura 50. Fattore di riduzione dei parametri ottenuto tramite l'analisi SSR in condizioni statiche e in condizioni sismiche: sezione 2 (SRFmin = 1.104)



Abbildung 51. Deviatorische Verformungen am Ende der SSR-Analyse unter seismischen Bedingungen für Abschnitt 2 (SRFmin = 1,104)

Figura 51. Deformazioni deviatoriche al termine dell'analisi SSR in condizioni sismiche per la sezione 2 (SRFmin = 1.104)

Der Brechmechanismus ist an die Stabilität der künstlichen Vermessung gekoppelt und beeinflusst den Baugrund nicht.

Il meccanismo di rottura è connesso alla stabilità del rilevato artificiale a progetto e non interessa i terreni di fondazione.

Unter Bruchbedingungen wird der größte Teil des die Böschung bildenden Materials plastifiziert.

In condizioni di rottura gran parte del materiale costituente il rilevato risulta plasticizzato.



Abbildung 52. Plastifizierung Schnitt 2

Figura 52. Plasticizzazione sezione 2

Um die zuvor erhaltenen Werte für die Stabilität der Böschung mit der endgültigen Konfiguration der Lagerstätte zu bestätigen, wurde eine Stabilitätsanalyse mit der ULS-Grenzgleichgewichtsmethode unter Verwendung der Software SLIDE (Rocscience) durchgeführt.

Die Analyse wurde mit den Designparametern (M2) durchgeführt, wobei nach einem Reduktionskoeffizienten desselben gleich SRFmin = 1,1 gesucht wurde.

Analog zur Finite-Elemente-Analyse wurde die seismische Einwirkung mit dem pseudostatischen Ansatz berücksichtigt. Die angenommenen seismischen Koeffizienten sind die zuvor berichteten.

Die folgenden Abbildungen zeigen die kritischen Gleitflächen für den ULS und für den ULS.

Al fine di confermare i valori precedentemente ottenuti per la stabilità del pendio avente la configurazione definitiva del deposito, è stata condotta una analisi di stabilità con il metodo all'equilibrio limite allo SLU mediante il software SLIDE (Rocscience).

L'analisi è stata effettuata con i parametri di progetto (M2) ricercando un coefficiente di riduzione degli stessi pari a SRF<sub>min</sub> = 1.1.

In analogia con quanto fatto nell'analisi agli elementi finiti l'azione sismcia è stata condiderata mediante l'approccio pseudo-statico. I coefficienti sismici adottati sono quelli riportati precedentemente.

Nelle figure a seguire si riportano rispettivamento per lo SLU e per lo SLV le superifci di scorrimento critiche.



Abbildung 53. Bewertung der Gesamtstabilität unter statischen Bedingungen (ULS) für Abschnitt 2 (SRFmin = 1,14)

Figura 53. Valutazione della stabilità globale in condizioni statiche (SLU) per la sezione 2 (SRFmin = 1.14)





Figura 54. Valutazione della stabilità globale in condizioni sismiche (SLV) per la sezione 2 (SRFmin=1.106)
### 8.2.3 Ergebnisteil 3

Bei den Analysen des Abschnitts 3 wurde eine Höhe des Grundwasserspiegels gleich der Geländeoberkante am Böschungsfuß angenommen. Die Zahlenwerte der geotechnischen Eingangsparameter sind in Anlage 12 (Plaxis) und in Anlage 13 und 14 (Folie) angegeben.

Die Finite-Elemente-Analyse (Plaxis) wurde mit Bodenwiderstandswerten durchgeführt, die mit M2-Parametern reduziert wurden.

Die seismische Einwirkung in Plaxis wurde mit dem Verfahren "Pseudostatische Analyse" eingefügt, indem äquivalente statische Kräfte auf das gesamte Modell angewendet wurden. Die Erdbebenbeiwerte wurden gemäß den Bestimmungen der Technischen Regelwerke "Arbeiten in Schüttgütern und Baugrubenfronten" ermittelt. Die Werte der in den Analysen angenommenen seismischen Koeffizienten sind unten zusammengefasst.

 $kh = a_{max} * \beta = 0.034 * 0.38 = 0.013 g;$ 

kv = kh \* 0.5 = 0.013 \* 0.5 = 0.006 g.

Für die Gesamtstabilität von Abschnitt 2 beträgt der Mindestsicherheitsfaktor unter statischen Bedingungen 1,107, was über dem von den Vorschriften festgelegten Mindestwert liegt. Anschließend wird die Gesamtstabilität der Lagerstätte überprüft.

### 8.2.3 Risultati sezione 3

Nelle analisi della sezione 3 si è assunta una quota della falda pari a quella del piano campagna in corrispondenza del piede del rilevato. I valori numerici dei parametri geotecnici di input sono riportati in Appendice 12 (Plaxis) e in Appendice 13 e 14 (Slide).

L'analisi agli elementi finiti (Plaxis) è stata effettuata con i valori di resistenza del terreno ridotti con i parametri M2.

L'azione sismica in plaxis è stata inserita medoiante la procedura "Pseudostatic analysis" applicando all'intero modello forze statiche equivalenti. I coefificienti sismici sono stati valutati in accordo con quanto prescito dalla normativa tecnica per le "Opere in materiali sciolti e fronti si scavo ". I valori dei coefficienti sismici adottati nelle analisi sono riassunti a seguire.

Per la stabilità globale della sezione 2, il fattore di sicurezza minimo in condizioni statiche, è pari a 1.107 che è superiore al valore minimo imposto da normativa. La stabilità globale del deposito è quindi verificata.





Figura 55. Fattore di riduzione dei parametri ottenuto tramite l'analisi SSR in condizioni statiche e in condizioni sismiche: sezione 3 (SRFmin = 1.107)



Abbildung 56. Deviatorische Verformungen am Ende der SSR-Analyse unter seismischen Bedingungen für Abschnitt 3 (SRFmin = 1,107)

Figura 56. Deformazioni deviatoriche al termine dell'analisi SSR in condizioni sismiche per la sezione 3 (SRFmin = 1.107)

Der Brechmechanismus ist an die Stabilität der künstlichen Vermessung gekoppelt und beeinflusst den Baugrund nicht.

Il meccanismo di rottura è connesso alla stabilità del rilevato artificiale a progetto e non interessa i terreni di fondazione.

Unter Bruchbedingungen wird der größte Teil des die Böschung bildenden Materials plastifiziert.

In condizioni di rottura gran parte del materiale costituente il rilevato risulta plasticizzato.



Abbildung 57. Plastifizierung Schnitt B - Fall F1

Um die zuvor erhaltenen Werte für die Stabilität der Böschung mit der endgültigen Konfiguration der Lagerstätte zu bestätigen, wurde eine Stabilitätsanalyse mit der ULS-Grenzgleichgewichtsmethode unter Verwendung der Software SLIDE (Rocscience) durchgeführt.

Die Analyse wurde mit den Designparametern (M2) durchgeführt, wobei nach einem Reduktionskoeffizienten desselben gleich SRFmin = 1,1 gesucht wurde.

Analog zur Finite-Elemente-Analyse wurde die seismische Einwirkung mit dem pseudostatischen Ansatz berücksichtigt. Die angenommenen seismischen Koeffizienten sind die zuvor berichteten.

Die folgenden Abbildungen zeigen die kritischen Gleitflächen für den ULS und für den ULS.

Figura 57. Plasticizzazione sezione 3

Al fine di confermare i valori precedentemente ottenuti per la stabilità del pendio avente la configurazione definitiva del deposito, è stata condotta una analisi di stabilità con il metodo all'equilibrio limite allo SLU mediante il software SLIDE (Rocscience).

L'analisi è stata effettuata con i parametri di progetto (M2) ricercando un coefficiente di riduzione degli stessi pari a  $SRF_{min} = 1.1$ .

In analogia con quanto fatto nell'analisi agli elementi finiti l'azione sismcia è stata condiderata mediante l'approccio pseudo-statico. I coefficienti sismici adottati sono quelli riportati precedentemente.

Nelle figure a seguire si riportano rispettivamento per lo SLU e per lo SLV le superifci di scorrimento critiche.





Figura 58. Valutazione della stabilità globale in condizioni statiche (SLU) per la sezione 3 (SRFmin = 1.277)



Abbildung 59. Bewertung der globalen Stabilität unter seismischen Bedingungen (SLV) für Abschnitt 3 (SRFmin = 1,243)

Die erhaltenen Werte der Sicherheitskoeffizienten sind I va immer höher als die von der Norm geforderten Werte der sup Sicherheitskoeffizienten.

Figura 59. Valutazione della stabilità globale in condizioni sismiche (SLV) per la sezione 3 (SRFmin = 1.243)

I valori dei coefficienti di sicurezza ottenuti sono sempre superiori ai valori dei coefficienti di sicurezza previsti dalla norma.

### 8.3 BELASTUNGEN AUS EINEM HOCHWASSER MIT 8.3 EINER WIEDERKEHRPERIODE VON

### 150 JAHREN

Bei einem Hochwasser mit einer Wiederkehrzeit von 150 erreicht der Wasserspiegel des Eisacks den Fuß der Lagerstätte.

Beim Zurückgehen des Hochwassers fließt das Wasser aus der Lagerstätte und verursacht durch das schnelle Absenken des Flussspiegels eine destabilisierende Sickerkraft (Rapid Flow Condition).

Stabilitätsprüfungen werden mit der Slide-Software im "vollen" Zustand mit piezometrischer Oberfläche (Anlage 15) und mit Filtrationsbewegung im "schnellen Aufweitungszustand" (Anlage 16) durchgeführt.

Für die Berechnung wurde konservativ angenommen, dass der maximale Hochwasserstand der maximalen Höhe des Schutzwalls (Steigung von etwa 5 Metern gegenüber der Höhe des Flussbetts) entspricht und sich anschließend eine vorsorgliche Abnahme von 4 Metern (Höhe 1 Meter über dem Niveau des Flussbettes). Für die Baugründe wurde der Mittelwert des Durchlässigkeitsbeiwertes auf Basis der in situ durchgeführten Versuche berücksichtigt (ks = 3,91 \* 10-5).

Unter Bezugnahme auf Anlage 15 und 16 wird nachgewiesen, dass bei maximaler Überschwemmung (HQ 150) eine minimale Abnahme der Standsicherheit im Vergleich zur Dimensionierung ohne Überschwemmung auftritt.

FSminHQ150 (S3-ULS) = 1,247 - "voll"

FSminHQ150 (S3-SLU) = 1,268 - "Schnellsenker"

FSmin (S3-ULS) = 1,276 - "ohne Hochwasser"

Die folgenden Abbildungen zeigen die Ergebnisse, die in den beiden analysierten Konfigurationen erzielt wurden. Die Sicherheitsfaktoren sind gleich 1,248 bzw. 1,273 für den "vollen" Zustand und für den "schnellen Abfackel"-Zustand.

Beide Koeffizienten sind höher als das gesetzlich vorgeschriebene Minimum. Damit ist die globale Stabilität der Lagerstätte verifiziert.

# CONDIZIONI DI STABILITÀ DEL DEPOSITO IN CASO DI PIENA CON TEMPO DI RITORNO

### 150 ANNI

Nel caso di una piena con tempo di ritorno di 150, il livello delle acque dell'Isarco raggiunge i piedi del deposito.

Al ritirarsi della piena, l'acqua fluisce dal deposito e determina una forza di filtrazione destabilizzante per effetto del rapido abbassamento del livello del fiume (Condizione di Svaso Rapido).

Le verifiche di stabilità vengono eseguite con il software Slide, nella condizione di "piena" con superficie piezometrica (Appendice 15) e con moto di filtrazione nella condizione di "svaso rapido" (Appendice 16).

Per il calcolo, si è ipotizzato cautelativamente che il livello di massima piena corrisponda alla massima quota dall'argine di protezione (innalzamento di circa 5 metri rispetto alla quota di fondo alveo) e che si abbia una successiva diminuzione cautelativa di 4 metri (altezza di 1 metro dalla quota di fondo alveo). Per i terreni di fondazione è stato considerato il valore medio del coefficiente di permeabilità sulla base delle prove effettuate in situ (ks = 3.91 \* 10-5).

Rimandando all'Appendice 15 e 16, si verifica che nel caso di massima piena (HQ 150) si ha una minima diminuzione della stabilità in confronto al caso di dimensionamento senza piena.

FSmin<sub>HQ150</sub> (S3-SLU) = 1.247 – "piena"

FSminHQ150 (S3-SLU) = 1.268 - "svaso rapido"

FSmin (S3-SLU) = 1.276 - "senza piena"

Nelle figure che seguono si riportano i risultati ottenuti nelle due configurazioni analizzate. I fattori di sicurezza sono pari a 1.248 e 1.273 rispettivamente per la condizione di "piena" e per la condizione di "svaso rapido".

Entrambi i coefficienti sono superiori al minimo imposto da normativa. La stabilità globale del deposito è quindi verificata.



Abbildung 60. Bewertung der Gesamtstabilität unter statischen Bedingungen für Abschnitt 3 (SRFmin = 1,247)

Figura 60. Valutazione della stabilità globale nella condizione di PIENA per la sezione 3 (SRFmin = 1.247)





Figura 61. Valutazione della stabilità globale nella condizione di SVASO RAPIDO per la sezione 3 (SRFmin = 1.268)

### 9 BEWEISSICHERUNGSPLAN

### 9.1 ALLGEMEINE KRITERIEN

Die Materialdeponie Hinterrigger befindet sich auf dem orographischen Rechten des Eisacks und im Norden, Osten und Süden vom Fluß bogenförmig begrenzt ist. Im Westen erhebt sich eine einige Zehnermeter hohe Felswand bis zur Forch Terrasse. Vor allem im Süden, wo die Felswand fast senkrecht ist, besteht ein großes Steinschlagrisiko. Die Materialdeponie wird ca. 5.000.000 m<sup>3</sup> Ausbruchmaterial der Gebrauchsklassen B+C (Material für Verfüllungen oder Aufschüttungen, nicht wiederverwendbares Material und daher Endlagerung). Die maximale Bemessung der Materialdeponie ist wie folgt:

(1) maximale Länge Materialdeponie im Endzustand= 470 m;

(2) maximale Breite Materialdeponie im Endzustand = 350 m;

(3) maximale Höhe des Zwischenlagers = 80 m.

Die 5 im Areal der Materialdeponie durchgeführten Erkundungsbohrungen wurden in eine Tiefe von bis zu 15 m abgeteuft. Es fanden sich grobkörnige Böden, bestehend vorwiegend aus Kiesen mit Sanden und Sanden mit Schluff mit einem Verdichtungsgrad zwischen mittel bis dicht (Lagerungsdichte zwischen 45 und 80%). Daher werden die Setzungen im Baugrund unter dränierten Bedingungen stattfinden und werden sich im Laufe der Aufschüttung der Deponie verändern.

Im vorhergehenden Kapitel 7 wurden die Nachweise der Deponie mit seinen größten Ausmaßen durchgeführt, d. h. unter Berücksichtigung der maximalen Höhe, sei es für den Grenzzustand der Tragfähigkeit, um die Standsicherheit des Bauwerks zu überprüfen, als auch für den Grenzzustand der Gebrauchstauglichkeit, um den Wert der in den umliegenden Bereichen induzierten Setzungen zu bestimmen, mit besonderer Berücksichtigung der Eisenbahn, der Hochspannungsleitungen und der vorhandenen Gebäude in der Nähe der Materialdeponie.

Im vorliegenden Kapitel werden die Kontrollinstrumente beschrieben, um während der Arbeiten den Sicherheitsgrad und die Korrektheit der Projektannahmen und der im vorhergehenden Kapitel 7 angeführten Nachweise zu überprüfen.

Das Beweissicherungsprogramm ermöglicht es, die Bewegungen innerhalb der Materialdeponie sowie die Wasserstände zu beobachten. Das zu installierende Überwachungssystem wird aus Pegelmessern, Inklinometern,

### 9 PIANO DI MONITORAGGIO

### 9.1 CRITERI GENERALI

Il deposito di Hinterrigger è situato sulla sponda orografica dell'Isarco e viene delimitato, a forma di arco, a nord, est e sud dal fiume. A ovest, una parete rocciosa alta decine di metri si staglia fino alla terrazza di Forch. Soprattutto a sud, dove la parete rocciosa è quasi verticale c'è un elevato rischio di caduta massi. Il deposito prevede per un volume di circa 5.000.000 m<sup>3</sup> nella sua massima capienza, con smarino di classe di utilizzo B+C (materiale idoneo per riporti o riempimenti si tratta di un deposito con smarino). Le dimensioni massime del deposito sono le seguenti:

(1) lunghezza massima del deposito finale = 470 m;

- (2) larghezza massima del deposito finale = 350 m;
- (3) altezza massima del deposito finale = 80 m.

I 5 sondaggi eseguiti in PE in corrispondenza del deposito, spinti fino ad una profondità di 15 m, hanno evidenziato la presenza di terreni a grana grossa costituiti prevalentemente da ghiaie con sabbia e sabbie con limo con grado di addensamento da medio a denso (valori della densità relativa compresi fra il 45 e l'80%). Conseguentemente, i cedimenti nei terreni di fondazione avverranno in condizioni drenate ed evolveranno durante lo stesso innalzamento del terrapieno del deposito.

Nel precedente capitolo 7 sono riportate le verifiche del deposito, nelle sue massime configurazioni geometriche, ovverosia considerando le massime altezze, sia agli stati limite ultimi, al fine di verificare il grado di stabilità dell'opera, sia agli stati limite di esercizio, per valutare l'entità dei cedimenti del deposito e, soprattutto, i valori dei cedimenti indotti nel terreno circostante, con particolare riferimento alla presenza della linea ferroviaria e dei fabbricati presenti in prossimità del deposito.

Nel presente capitolo è illustrata la strumentazione di controllo prevista per verificare, in corso d'opera, il grado di sicurezza del deposito e la correttezza delle assunzioni progettuali e delle verifiche riportate nel precedente capitolo 7.

Il sistema di monitoraggio previsto permetterà di monitorare i movimenti del deposito. Il sistema di monitoraggio da installare sarà costituito da strumentazione comprendente inclinometri, e mire topografiche. Setzungsmesser mit Inkrementalmessung und topographischen Fixpunkten bestehen.

Was die technischen Eigenschaften der Instrumente und ihre Installation betrifft, müssen diese den dafür bestimmten Spezifikationen des Ausführungsprojektes entsprechen.

Das Ziel der vorgeschlagenen Instrumentierung besteht darin, etwaige Formänderungen vor der endgültigen Begrünung zu beobachten. Daher wird es als ausreichend angesehen, das Verhalten des Pfahls zu analysieren.

Die Lesefrequenz und die Installationszeiten sind für die verschiedenen Instrumente in den jeweiligen Überwachungstabellen definiert. Die ausführlichen Referenzdiagramme sind die folgenden:

02\_H61\_DB\_300\_KLP\_B0130\_51242;

Das Überwachungssystem zusammen mit dem Leseprogramm und der Datenanalyse könnte möglicherweise in der Zahl erhöht und in der Lesefrequenz intensiviert werden, um jede kleinste Bewegung, auch oberflächliche, des Cumulus zu erkennen.

Im Detail besteht das geotechnische Beweissicherungssystem aus:

 Inklinometer: man sieht 8 Inklinometer (I1-I8) vor, um die vorläufigen und definitiven Böschungen der Aufschüttung zu überwachen. Die Instrumente werden am Ende der Arbeiten im jeweiligen Zuständigkeitsgebiet jedes Instrument angebracht. Sie müssen in eine Tiefe von mindestens 20 m ab aktueller GOK reichen.

Die Häufigkeit der Ablesungen erfolgt während des Baus der Lagerstätte und in den ersten 3 Monaten nach Abschluss der Arbeiten wöchentlich, danach bis zur Stabilisierung der Maßnahmen selbst vierteljährlich.

 Topographische Fixpunkte: unmittelbar nach dem Ende der Aufschüttungsarbeiten müssen auf der fertigen Oberfläche topographische Fixpunkte installiert werden. Es ist vorgesehen 41 Festpunkte auf der gesamten Oberfläche, die die Aufschüttung bedeckt, anzubringen, um die Setzungen und Verschiebungen nach Ende der Aufschüttungsarbeiten zu messen.

Die der Benchmarks wöchentlich, in den folgenden 3 Monaten monatlich und danach vierteljährlich. Nel presente capitolo vengono descritti gli strumenti e le quantità previste.

Per quanto concerne le caratteristiche tecniche delle strumentazioni previste e le modalità di installazione dovranno essere conformi alle apposite specifiche tecniche predisposte per il Progetto Esecutivo.

La strumentazione proposta ha come obbiettivo quello di osservare eventuali cambiamenti di forma, prima del rinverdimento finale, pertanto si ritiene sufficiente ad analizzare il comportamento del cumulo.

La frequenza di lettura e le tempistiche di installazione sono definite per i diversi strumenti nelle relative tavole di monitoraggio. Gli elaborati grafici di riferimento sono i seguenti:

02\_H61\_DB\_300\_KLP\_B0130\_51242;

Il sistema di monitoraggio, insieme al programma delle letture e l'analisi dei dati, potranno essere eventualmente potenziati in numero e intensificati in frequenza di lettura, al fine di rilevare ogni minimo movmento anche superficiale del cumulo.

Nel dettaglio il sistema di monitoraggio geotecnico sarà costituito da:

- Inclinometri: si prevede di installare 6 inclinometri (A, B, C, D, E, F), per il monitoraggio delle scarpate del riempimento. Gli inclinometri dovranno essere spinti fino ad una profondità di almeno 10 m all'interno del terreno di fondazione del deposito. La frequenza delle letture sarà setimanale durante la costruzione del deposito e per i primi 3 mesi dopo la fine dei lavori, successivamente le letture saranno trimestrali fino alla stabilizzazione delle misure stesse.

La frequenza delle letture sarà settimanale nei primi 3 mesi dall'installazione dei caposaldi, mensile nei 3 mesi successivi, successivamente letture trimestrali.

### 9.2 FESTLEGUNG ÜBERWACHUNGSSCHWELLEN

Das vorgeschlagene Überwachungssystem wurde in Bezug auf die neue geometrische Konfiguration der Halde als am besten geeignet identifiziert.

Die bereitgestellte Instrumentierung ermöglicht die Überwachung von

oberflächliche und tiefe Verschiebungen der Ablagerung und damit das Verhalten der Ablagerung (Stabilität) über die Zeit zu überwachen.

Im jetzigen Stand der Böschung gilt nur noch die Überwachung der Standsicherheit der Böschungen, da alle Arten von Setzungs- und Verformungserscheinungen am Dammfuß als erschöpft gelten, ebenso wie etwaige Eingriffe in das darunter liegende Grundwasser.

Die folgende Tabelle zeigt die SLE-Verschiebungswerte, die mit den oben dargestellten Berechnungsmodellen ermittelt wurden, für die Punkte übernommen wurden, die den installierten optischen Visieren am nächsten liegen.

Auf diese Weise ist es möglich, eine begrenzte und signifikante Anzahl. Es wurde beschlossen, durchschnittlich 80 % des absoluten Verschiebungswerts als Referenz für die Aufmerksamkeitsschwellen und 100 % für die Alarmschwellen zu verwenden.

Die Synthese dieser Schwellenwerte gilt sowohl für die optischen Ziele als auch für die direkt auf der Bank installierten gleiche Verschiebung haben müssen wie die entsprechenden optischen Ziele auf der Oberfläche.

### 9.2 DEFINIZIONE SOGLIE DI MONITORAGGIO

Il sistema di monitoraggio proposto è stato individuato come il più idoneo in rapporto alla nuova configurazione geometrica del cumulo.

La strumentazione prevista consente il monitoraggio degli spostamenti superficiali e profondi del deposito e quindi di monitorare il comportamento del deposito (stabilità) nel tempo.

Allo stadio attuale del rilevato si reputa valido il solo monitoraggio della stabilità delle scarpate, in quanto si ritengono esauriti ogni tipo di fenomenti di assestamento e deformazioe alla base del rilevato, oltre che l'eventuale interferenza con la falda sottostante.

Nella seguente tabella vengono riportati i valori di spostamento agli SLE, ottenuti nei modelli di calcolo sopra illustrati, adottando i parametri caratteristici del materiale di deposito abbattuti del 10%, per i punti più prossimi alle mire ottiche installate.

In questo modo è possibile definire un numero limite e significativo delle soglie. Si è deciso di utilizzare mediamente l'80% del valore assoluto di spostamento come riferimento per le soglie di attenzione ed il 100% per le soglie di allarme. La sintesi di tali soglie è valida sia per le mire ottiche che per gli inclinometri, installati direttamente sulla ribanca, i quali devono avere lo stesso spostamento, in testa, delle mire ottiche corrispondenti sulla superficie.

| Soglia di Attenzione /  | Soglia di Allarme / |
|-------------------------|---------------------|
| Aufmerksamkeitsschwelle | Alarmschwelle       |
| 10 cm                   | 15 cm               |

Abbildung 62. Verschiebungsgrenzwerte in der Nähe der installierten optischen Visiere

Figura 62. valori limite di spostamento in prossimità delle mire ottiche installate

### 9.3 EIGENSCHAFTEN DER INSTRUMENTE

Nachfolgend werden die Eigenschaften der wichtigsten Instrumente angegeben.

### 9.3.1 Inklinometer

Die Inklinometermessungen ermitteln die Abweichung von der Senkrechten ausgewählter Referenzpunkte entlang der Vertikalen. Aus den Messungen kann man durch numerische Integration die Verschiebungen erkennen und somit die Bewegungszonen im Untergrund. Die Messungen erfolgen normalerweise händisch mit mobilen Geräten mit Führungsrädern (Inklinometersonde), die in eigens dafür bestimmten Nutrohre hinuntergelassen werden. Die Nutrohre werden ein Bohrloch zementiert (Abbildung 63). Eine Erhebung besteht normalerweise aus vier Messungen, wobei die Sonde im Bohrloch um 90° gedreht wird, um die systematischen Fehler zu annullieren. Die Messungen können nach unten oder nach oben erfolgen und werden normalerweise im Abstand von 0.5 oder 1 m durchgeführt.

Jede Erhebung wird mit der ersten Messung (Nullmessung) verglichen. Die Verschiebungen entlang der Senkrechten können sich auf den Rohrkopf des Inklinometerrohrs beziehen (diese Position muss mittels optischer Messungen bestimmt werden) oder auf das Bohrende (als fix betrachtet). Die Verformungskurve wird durch den Rotationswinkel der Sonde Senkrechten zur auf zwei vertikalen. normal zueinanderstehenden Ebenen bestimmt und normalerweise in einem polaren Koordinatensystem (Modul und Azimut) dargestellt. Man kann auch andere Bezugssysteme verwenden, wie z. B. ein kartesisches Koordinatensystem x-y.

Die Genauigkeit der Inklinometermessungen hängt von der Qualität der Messgeräte und von der Ausführung der Messungen ab. Systematische Fehler beruhen auf:

- 1. Die Empfindlichkeitsvariationen des Messgeräts (Temperaturänderungen, Alterung der Sensoren);
- 2. Die Variation der Nullwerte des Sensors;
- Die Variation der Ausrichtung der Sensoren aufgrund der Mechanik des Gerätes;
- 4. Fehler durch die Nutrohre.

Den ersten drei Fehlerquellen kann man durch häufige Eichung des Gerätes entgegenwirken. Zufällige Fehler sind hingegen die Änderung der Anordnung der Sonden (Variationen der mechanischen Toleranz zwischen Räder und Führung durch Verschmutzungen, Krusten, Fugen, usw.) und die Fehler bei der Bestimmung der Höhe der Sonde. Diese können durch eine Wiederholung der Messungen vermieden werden.

### 9.3 CARATTERISTICHE STRUMENTAZIONE

Di seguito si riportano le caratteristiche dei principali strumenti.

### 9.3.1 Inclinometri

I rilievi inclinometrici consistono nelle misure di deviazione dalla verticalità di punti significativi disposti lungo una verticale. Dalle misure, mediante integrazione numerica, si risale agli spostamenti evidenziando così le zone in movimento nel sottosuolo. I rilievi sono generalmente effettuati in modo manuale con attrezzature removibili munite di guide (sonde inclinometriche) che vengono calate in appositi tubi scanalati, cementati in un foro di sondaggio (Figura 63). Un rilievo comporta di solito l'esecuzione di quattro cicli di misura, ruotando la sonda di 90° nel foro per annullare gli errori sistematici. Le misure possono essere effettuate sia in discesa che in risalita, con passo di solito pari a 0.5 o 1 m.

Ogni elaborazione di rilievi inclinometrici è confrontata con la deformata della lettura iniziale (di zero). Gli spostamenti lungo la vertica possono essere riferiti alla testa della tubazione inclinometrica (la cui posizione deve essere determinata con misure ottiche) oppure al fondo foro (considerato fisso). La deformata, determinata dagli angoli di rotazione della sonda rispetto alla verticale in due piani verticali normali, viene di solito descritta con riferimento a un sistema di coordinate polari (modulo ed azimut). E' anche possibile utilizzare altri sistemi di riferimento, per esempio un sistema di coordinate cartesiane x-y.

L'accuratezza delle misure inclinometriche dipende dalla qualità della strumentazione e dall'esecuzione delle misure. Sono causa di errori sistematici:

- la variazione della sensibilità delle apparecchiature di misura (derive di temperatura e invecchiamento dei sensori);
- 2. la variazione dei valori di zero degli stessi sensori;
- la variazione di assetto dei sensori inclinometrici, dovuta alla meccanica dello strumento;
- 4. gli errori dovuti alla spiralatura delle tubazioni.

Ai primi tre si pone parziale rimedio con una frequente taratura dello strumento. Sono invece causa di errori accidentali la variazione dell'assetto della sonda (dovuta a variazioni di tolleranza meccanica tra ruote e guide, a causa di impurità, incrostazioni, giunti, ecc.) e gli errori nella determinazione della quota della sonda. Essi si possono ridurre con la ripetizione delle misure.



Abbildung 63. Bestandteile eines Inklinometermesssystems mit mobiler Sonde.

Figura 63. Componenti di un sistema per misure inclinometriche con sonda removibile.

### 9.4 REFERENZDOKUMENTE

### **Executive-Projekt**

- [1] Technischer Bericht Materialdeponie Hinterrigger Geologie des Deponieareals D0150-TB-00667-01
- [2] Technischer Bericht Materialdeponie Hinterrigger Geotechnik des Deponieareals D0150-TB-00944-01
- [3] Lageplan Materialdeponie Hinterrigger-Geologie/Geomorphologie D0150-LP-00232-01
- [4] Lageplan Materialdeponie Hinterrigger-Hydrogeologie D0150-LP-00233-01
- [5] Längsschnitt Materialdeponie Hinterrigger-Geologie/Geomorphologie D0150-LP-00241-01
- [6] Längsschnitt Materialdeponie Hinterrigger-Hydrogeologie D0150-LP-00241-01
- [7] Fotodokumentation BohrungenHinterrigger Ri-B-01-05, Ri-B-02-05, Ri-B-03-05, Ri-B-04-05, Ri-B-05-05

### **Detailliertes Executive-Projekt**

- [8] Bericht Hydraulische Anordnung Vorläufige Phase 02\_H61\_DB\_300\_KTB\_B0130\_51054
- [9] Regen- und Abwasserentsorgungsplan Vorläufige Phase 02\_H61\_EW\_450\_KLP\_B0130\_51128
- [10] Abschnitte Abwasserbeseitigung Vorläufige Phase 02\_H61\_EW\_450\_KLP\_B0130\_51129
- [11] Übersichtsplan Betriebshof Hinterrigger-02\_H61\_BE\_450\_KBE\_B0130\_54586
- [12] Längsschnitt Lagerstätte Hinterrigger-02\_H61\_BE\_450\_KQP\_B0130\_54607
- [13] Überwachung Lagerstätte Hinterrigger -Provisorische Phase - Plan und Schnitte 02\_H61\_DB\_300\_KLP\_B0130\_5124

### 9.4 DOCUMENTI DI RIFERIMENTO

### **Progetto Esecutivo**

- [1] Relazione tecnica Deposito Hinterrigger Geologia area di deposito D0150-TB-00667-01
- [2] Relazione tecnica Deposito Hinterrigger Geotecnica area di deposito D0150-TB-00944-01
- [3] Planimetria deposito Hinterrigger-Geologia/geomorfologia D0150-LP-00232-01
- [4] Planimetria deposito Hinterrigger- Idrogeologia D0150-LP-0\0233-01
- [5] Sezione longitudinale deposito Hinterrigger-Geologia/geomorfologia D0150-LP-00a241-01
- [6] Sezione longitudinale deposito Hinterrigger-Idrogeologia D0150-LP-00242-01
- [7] Documentazione fotografica sondaggi Hinterrigger Ri-B-01-05, Ri-B-02-05, Ri-B-03-05, Ri-B-04-05, Ri-B-05-05

### Progetto Esecutivo di Dettaglio

- [8] Relazione di sistemazione idraulica Fase provvisoria
   02\_H61\_DB\_300\_KTB\_B0130\_51054
- [9] Planimetria smaltimento acque meteoriche e reflue – Fase provvisoria 02\_H61\_EW\_450\_KLP\_B0130\_51128
- [10] Sezioni smaltimento acque meteoriche reflue Fase provvisoria 02\_H61\_EW\_450\_KLP\_B0130\_51129
- [11] Planimetria generale deposito Hinterrigger-02\_H61\_BE\_450\_KBE\_B0130\_54586
- [12] Sezione longitudinale deposito Hinterrigger-02\_H61\_BE\_450\_KQP\_B0130\_54607
- [13] Monitoraggio del deposito Hinterrigger Fase provvisoria – Planimetria e Sezioni 02\_H61\_DB\_300\_KLP\_B0130\_51242

# 10 LISTE DER ANHÄNGE

# 10 LISTA DELLE APPENDICI

| ANHANG 1: IN-SITU-TESTS (pag.75)                                    | • APPENDICE 1: PROVE IN SITU (pag.75)                       |
|---------------------------------------------------------------------|-------------------------------------------------------------|
| ANHANG 2: LABORTESTS (pag.107)                                      | APPENDICE 2: PROVE DI LABORATORIO (pag.107)                 |
| • ANHANG 3: PLAXIS-ANALYSE beer SLS / SLD von ABSCHNITT 1 (pag.121) | APPENDICE 3: ANALISI PLAXIS allo SLE/SLD - SEZ 1 (pag.121)  |
| o Statische Bedingungen: Phase_1 - Phase_5                          | Condizioni statiche: Phase_1 - Phase_5                      |
| o Seismische Bedingungen: Phase_8                                   | Condizioni sismiche: Phase_8                                |
| • ANHANG 4: PLAXIS-ANALYSE bei SLE / SLD – ABSCHNITT 2 (pag.213)    | APPENDICE 4: ANALISI PLAXIS allo SLE/SLD - SEZ 2 (pag.213)  |
| o Statische Bedingungen: Phase_1 - Phase_5                          | Condizioni statiche: Phase_1 - Phase_5                      |
| o Seismische Bedingungen: Phase_8                                   | Condizioni sismiche: Phase_8                                |
| • ANHANG 5: PLAXIS-ANALYSE bei SLS / SLD – ABSCHNITT 3 (pag.306)    | APPENDICE 5: ANALISI PLAXIS allo SLE/SLD - SEZ 3 (pag.306)  |
| o Statische Bedingungen: Phase_1 - Phase_5                          | Condizioni statiche: Phase_1 - Phase_5                      |
| o Seismische Bedingungen: Phase_8                                   | Condizioni sismiche: Phase_8                                |
| • ANHANG 6: ULS-/LLS-PLAXIS-ANALYSE – ABSCHNITT 1 (pag.399)         | APPENDICE 6: ANALISI PLAXIS allo SLU/SLV - SEZ 1 (pag.399)  |
| o Statische Bedingungen: Phase_1 – Phase_5 und Phase_7              | Condizioni statiche: Phase_1/_5 e Phase_7                   |
| o Seismische Bedingungen: Phase 6 und Phase_8                       | Condizioni sismiche: Phase 6 e Phase_8                      |
| • ANHANG 7: OBJEKTIVANALYSE bei ULS – ABSCHNITT 1 (pag.513)         | • APPENDICE 7: ANALISI SLIDE allo SLU - SEZ 1 (pag.513)     |
| • ANHANG 8: OBJEKTIVANALYSE bei SLV – ABSCHNITT 1 (pag.532)         | • APPENDICE 8: ANALISI SLIDE allo SLV - SEZ 1 (pag.532)     |
| • ANHANG 9: ULS-/LLS-PLAXIS-ANALYSE – ABSCHNITT 2 (pag.551)         | APPENDICE 9: ANALISI PLAXIS allo SLU/SLV - SEZ 2 (pag.551)  |
| o Statische Bedingungen: Phase_1 – Phase_5 und Phase_7              | Condizioni statiche: Phase_1/_5 e Phase_7                   |
| o Seismische Bedingungen: Phase 6 und Phase_8                       | Condizioni sismiche: Phase 6 e Phase_8                      |
| • ANHANG 10: OBJEKTIVANALYSE bei ULS – ABSCHNITT 2 (pag.666)        | • APPENDICE 10: ANALISI SLIDE allo SLU - SEZ 2 (pag.666)    |
| • ANHANG 11: OBJEKTIVANALYSE bei SLV – ABSCHNITT 2 (pag.687)        | APPENDICE 11: ANALISI SLIDE allo SLV - SEZ 2 (pag.687)      |
| • ANHANG 12: ULS-/LLS-PLAXIS-ANALYSE – ABSCHNITT 3 (pag.708)        | APPENDICE 12: ANALISI PLAXIS allo SLU/SLV - SEZ 3 (pag.708) |
| o Statische Bedingungen: Phase_1 - Phase_6                          | Condizioni statiche: Phase_1 – Phase_6                      |
| o Seismische Bedingungen: Phase 7 - Phase_8                         | Condizioni sismiche: Phase 7 - Phase_8                      |
| • ANHANG 13: OBJEKTIVANALYSE bei ULS – ABSCHNITT 3 (pag.822)        | • APPENDICE 13: ANALISI SLIDE allo SLU - SEZ 3 (pag.822)    |
| • ANHANG 14: OBJEKTIVANALYSE bei SLV – ABSCHNITT 3 (pag.843)        | • APPENDICE 14: ANALISI SLIDE allo SLV - SEZ 3 (pag.843)    |

# ANHANG 1 - IN-SITU-TESTS

# **APPENDICE 1 – PROVE IN SITU**

# UMFRAGE NEU GESTALTEN

### SONDAGGI DI RIPROGETTAZIONE

٦

| Certificato nº 2020/027-06 del 24/01/2022           |                     |
|-----------------------------------------------------|---------------------|
| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.I. | Sondaggio: BH1      |
| Riferimento: Vama (BZ) - Deposito Hinterrigger      | Data: 03-16/12/2021 |
| Coordinate: 46.760929 - 11.646371                   | Quota:              |
| Perforazione: Perforazione a carotaggio continuo    |                     |

| S         | CALA 1:205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        | STRATIGRAFIA                                                                                                                        | Pagina 1/2                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 0 J       | metri LITOLOGIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | el. % Cass put                                                                         | DESCRIZIONE                                                                                                                         |                                               |
| SI<br>178 | CALA         1:205           Imetri         LITOLOGIA         P           1         2         3           4         5         6           7.2         8         7           8         9         1           10.         11         1           11.         1         1           12.         3         1           13.         -         1           14.         1         1           15.         1         1           14.         1         1           14.         1         1           15.         1         1           14.         1         1           15.         1         1           14.         1         1           15.         1         1           18.         1         1           19.         1         1           20.         1         1           21.         1         1           22.         1         1           23.         1         1           30.         3         1 | <sup>rel</sup> 100 Cana Prof.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | STRATIGRAFIA         DESCRIZIONE         Smarino:         Materiale di risulta costituito da detriti di varie litologie provenienti | Pagina 1/2<br>da lavori di scavo di galleria. |
|           | 31.<br>32.<br>33.<br>34.<br>35.<br>36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>12                                                                               |                                                                                                                                     |                                               |
|           | 38_<br>39_ 5 5<br>40_ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13<br>14                                                                               |                                                                                                                                     |                                               |

| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.l. | Sondaggio: BH1      |
|-----------------------------------------------------|---------------------|
| Riferimento: Varna (BZ) - Deposito Hinterrigger     | Data: 03-16/12/2021 |
| Coordinate: 46.760929 - 11.646371                   | Quota:              |

Perforazione: Perforazione a carotaggio continuo

### STRATIGRAFIA SCALA 1:205 Pagina 2/2 © R metri LITOLOGIA Prel. % Cass. DESCRIZIONE Smarino: Materiale di risulta costituito da detriti di varie litologie provenienti da lavori di scavo di galleria. 50. 55. Limo argilloso molto addensato, marron chiaro nocciola. 80.0 Una volta terminato il carotaggio, il foro di sondaggio è stato chiuso con una miscela di cemento e bentonite.























| Certificato nº 2020/027-06 del 24/01/2022           |                     |  |  |
|-----------------------------------------------------|---------------------|--|--|
| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.l. | Sondaggio: BH1      |  |  |
| Riferimento: Varna (BZ) - Deposito Hinterrigger     | Data: 03-16/12/2021 |  |  |
| Fotografie - Pagina 13/14                           | Pagina 13           |  |  |



Cassetta nº 24 - profondità da m 75,00 a m 78,00

| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.l. | Sondaggio: BH1      |  |
|-----------------------------------------------------|---------------------|--|
| Riferimento: Varna (BZ) - Deposito Hinterrigger     | Data: 03-16/12/2021 |  |
| otografie - Pagina 14/14                            | Pagina 14           |  |
|                                                     | HTE 375 19441       |  |
|                                                     |                     |  |
|                                                     |                     |  |
|                                                     | and have            |  |

3.4

Cassetta nº 25 - profondità da m 78,00 a m 80,00

ê

### Certificato nº 2020/027-06 del 24/01/2022

Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.l.

Riferimento: Varna (BZ) - Deposito Hinterrigger Coordinate: 46.763409 - 11.648881 Data: 16/12/2021-12/01/2022 Quota:

Sondaggio: BH2

Perforazione: Perforazione a carotaggio continuo

## SCALA 1:200

# STRATIGRAFIA

Pagina 1/2

| o l<br>mm | R metri              | LITOLOGIA | Prel. % | Cass | prof.<br>m | DESCRIZIONE                                                                                                           |
|-----------|----------------------|-----------|---------|------|------------|-----------------------------------------------------------------------------------------------------------------------|
|           | 1_<br>2_<br>3        |           |         | 1    | 6          | Smarino:<br>Materiale di risulta costituito da detriti di varie litologie provenienti da lavori di scavo di galleria. |
|           | 4_<br>5_<br>6        |           |         | 2    |            |                                                                                                                       |
|           | 7_<br>8_<br>9_       |           |         | 3    |            |                                                                                                                       |
|           | 10_<br>11_<br>12_    |           |         | 4    |            |                                                                                                                       |
|           | 13_<br>14_<br>15_    |           |         | 5    |            |                                                                                                                       |
|           | 16_<br>17_<br>18_    |           |         | 6    |            |                                                                                                                       |
|           | 19_<br>20_<br>21_    |           |         | 7    |            |                                                                                                                       |
|           | 22<br>23<br>24<br>25 |           |         | 8    |            |                                                                                                                       |
|           | 26_<br>27_<br>28     |           |         | 9    |            |                                                                                                                       |
| 178       | 29_<br>30_<br>31_    |           |         | 10   |            |                                                                                                                       |
|           | 32_<br>33_<br>34_    |           |         | 11   |            |                                                                                                                       |
|           | 35_<br>36_<br>37_    |           |         | 12   |            |                                                                                                                       |
|           | 38_<br>39_<br>40     |           |         | 14   |            |                                                                                                                       |

| Certificato nº 2020/027-06 del 24/01/2022           |                             |  |  |  |  |
|-----------------------------------------------------|-----------------------------|--|--|--|--|
| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.l. | Sondaggio: BH2              |  |  |  |  |
| Riferimento: Varna (BZ) - Deposito Hinterrigger     | Data: 16/12/2021-12/01/2022 |  |  |  |  |
| Coordinate: 46.763409 - 11.648881                   | Quota:                      |  |  |  |  |

Perforazione: Perforazione a carotaggio continuo

# SCALA 1:200

# STRATIGRAFIA

Pagina 2/2

| o R metri<br>mm v bet                                                                                                                                 | LITOLOGIA   | Prel. % Cass. prof. m                                      | DESCRIZIONE                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 41_<br>42_<br>43_<br>44_<br>45_<br>46_<br>47_<br>48_<br>49_<br>50_<br>51_<br>52_<br>54_<br>55_<br>54_<br>55_<br>55_<br>55_<br>55_<br>55_<br>55_<br>55 |             | 14<br>15<br>16<br>17<br>18<br>19<br><br>20 <sub>59,0</sub> | Smarino:<br>Materiale di risulta costituito da detriti di varie litologie provenienti da lavori di scavo di galleria. |
| 60_<br>152 61_<br>131 62                                                                                                                              |             | 21 62,0                                                    | Limo argilloso molto addensato, marron chiaro nocciola.                                                               |
| Una vol                                                                                                                                               | ta terminal | to il carotagg                                             | o, il foro di sondaggio è stato chiuso con una miscela di cemento e bentonite.                                        |



# Certificato nº 2020/027-06 del 24/01/2022 Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.I. Sondaggio: BH2 Riferimento: Varna (BZ) - Deposito Hinterrigger Data: 16/12/2021-12/01/2022 Fotografie - Pagina 4/13 Pagina 4 Cassetta nº 3 - profondità da m 6,00 a m 9,00 Cassetta nº 4 - profondità da m 9,00 a m 12,00
















| Certificato nº 2020/027-06 del 24/01/2022           |                             |
|-----------------------------------------------------|-----------------------------|
| Committente: BRENNERO TUNNEL COSTRUCTION S.c.a.r.I. | Sondaggio: BH2              |
| Riferimento: Varna (BZ) - Deposito Hinterrigger     | Data: 16/12/2021-12/01/2022 |
| Fotografie - Pagina 13/13                           | Pagina 13                   |
| 45                                                  | 46                          |
|                                                     | 1. 1                        |
|                                                     | A Statement of the second   |
|                                                     |                             |



SEISMISCHE UNTERSUCHUNG DER REFRAKTIONSTOMOGRAPHIE

INDAGINE SISMICA DI TOMOGRAFIA A RIFRAZIONE



#### INFILTROMETRISCHE TESTS

#### PROVE INFILTROMETRICHE

#### 5.1 PROVA INFILTROMETRICA P1

Di seguito sono riportate tutte le registrazioni eseguite per l'esecuzione della prova P1.

| Prova 1: Dati terreno |           |                    |                   |  |  |  |
|-----------------------|-----------|--------------------|-------------------|--|--|--|
| N. lettura            | Tempo (s) | Livello acqua (cm) | Abbassamento (cm) |  |  |  |
| 1                     | 0         | 25                 |                   |  |  |  |
| 2                     | 30        | 18.4               | 6.6               |  |  |  |
| 3                     | 60        | 13.2               | 5.2               |  |  |  |
| 4                     | 90        | 9.1                | 1.1               |  |  |  |
| 5                     | 120       | 7                  | 2.1               |  |  |  |
| 6                     | 150       | 5.5                | 1.5               |  |  |  |
| 7                     | 180       | 5                  | 0.5               |  |  |  |
| 8                     | 210       | 3.5                | 1.5               |  |  |  |
| 9                     | 240       | 3                  | 0.5               |  |  |  |
| 10                    | 300       | 2                  | 1                 |  |  |  |

| Tabella 1 | - Dati | di camp | agna  | ner  | a nr | ova  | 1.       |
|-----------|--------|---------|-------|------|------|------|----------|
| Tabella T | - Dau  | ui camp | agiia | peri | a pi | uva. | <b>1</b> |

|               | Prova 1: Rielaborazione dei dati |                          |                            |                         |                           |                              |                               |                        |  |  |
|---------------|----------------------------------|--------------------------|----------------------------|-------------------------|---------------------------|------------------------------|-------------------------------|------------------------|--|--|
| N.<br>lettura | Tempo<br>(s)                     | Livello<br>acqua<br>(cm) | Abbassamento<br>acqua (cm) | Intervallo<br>tempo (s) | Velocità<br>infiltrazione | Livello<br>idrico su<br>P.C. | Gradiente<br>idraulico<br>(-) | Permeabilità<br>(cm/s) |  |  |
| 1             | 0                                | 25                       | 72                         | 1753                    |                           | 17                           |                               | 57.0                   |  |  |
| 2             | 30                               | 18.4                     | 6.6                        | 30                      | 0.22                      | 10.4                         | 2.30                          | 0.095                  |  |  |
| 3             | 60                               | 13.2                     | 5.2                        | 30                      | 0.17                      | 5.2                          | 1.65                          | 0.105                  |  |  |
| 4             | 90                               | 9.1                      | 1.1                        | 30                      | 0.13                      | 1.1                          | 1.14                          | 0,120                  |  |  |
| 5             | 120                              | 7                        | 2.1                        | 30                      | 0.07                      | -1                           | 0.88                          | 0,080                  |  |  |
| 6             | 150                              | 5.5                      | 1.5                        | 30                      | 0.05                      | -2.5                         | 0.69                          | 0,072                  |  |  |
| 7             | 180                              | 5                        | 0.5                        | 30                      | 0,01                      | -3                           | 0.63                          | 0,026                  |  |  |
| 8             | 210                              | 3.5                      | 1.5                        | 30                      | 0.05                      | -4.5                         | 0.44                          | 0,114                  |  |  |
| 9             | 240                              | 7.4                      | 0.5                        | 30                      | 0.01                      | -5                           | 0.38                          | 0,044                  |  |  |
| 10            | 300                              | 6.7                      | 1                          | 60                      | 0.01                      | -6                           | 0.25                          | 0,066                  |  |  |

Tabella 2 – Elaborazione dati per la prova 1.

Alla luce dei risultati ottenuti per la prova P1, è possibile stimare un coefficiente di permeabilità media pari a 7.20x10<sup>-4</sup> [m/s].

#### 5.2 PROVA INFILTROMETRICA P2

Di seguito sono riportate tutte le registrazioni eseguite per l'esecuzione della prova P2, realizzata in sommità del cumulo realizzato in corrispondenza dell'area di coltivazione presente lungo il tatto vallivo del cantiere:

| Prova 2: Dati terreno |           |                    |                   |  |  |  |
|-----------------------|-----------|--------------------|-------------------|--|--|--|
| N. lettura            | Tempo (s) | Livello acqua (cm) | Abbassamento (cm) |  |  |  |
| 1                     | 0         | 25                 |                   |  |  |  |
| 2                     | 30        | 23                 | 2                 |  |  |  |
| 3                     | 60        | 20.4               | 2.6               |  |  |  |
| 4                     | 90        | 18.5               | 2                 |  |  |  |
| 5                     | 120       | 17.8               | 0.6               |  |  |  |
| 6                     | 150       | 15.8               | 2                 |  |  |  |
| 7                     | 240       | 14                 | 1.8               |  |  |  |
| 8                     | 270       | 13.2               | 0.8               |  |  |  |
| 9                     | 360       | 8.7                | 4.5               |  |  |  |
| 10                    | 480       | 6.4                | 2.3               |  |  |  |
| 11                    | 600       | 4.3                | 2.1               |  |  |  |
| 12                    | 720       | 2.7                | 1.6               |  |  |  |
| 13                    | 900       | 1.5                | 1.2               |  |  |  |

| Tabella 3 – Dati di campagna pe | er la prova 2. |
|---------------------------------|----------------|
|---------------------------------|----------------|

| Flova 2; Nielabofazione dei dati |              |                          |                                |                         |                           |                              |                               |                         |  |  |
|----------------------------------|--------------|--------------------------|--------------------------------|-------------------------|---------------------------|------------------------------|-------------------------------|-------------------------|--|--|
| N.<br>lettura                    | Tempo<br>(s) | Livello<br>acqua<br>(cm) | Abbassamen<br>to acqua<br>(cm) | Intervallo<br>tempo (s) | Velocità<br>infiltrazione | Livello<br>idrico su<br>P.C. | Gradiente<br>idraulico<br>(-) | Permeabili<br>tả (cm/s) |  |  |
| 1                                | 0            | 25                       | (4-2)                          |                         | (*)                       | (645)                        |                               |                         |  |  |
| 2                                | 30           | 23                       | 2                              | 30                      | 0,0667                    | 19                           | 5.75                          | 0,0116                  |  |  |
| 3                                | 60           | 20.4                     | 2.6                            | 30                      | 0,0867                    | 16.4                         | 5.10                          | 0,0170                  |  |  |
| 4                                | 90           | 18.5                     | 2                              | 30                      | 0,0667                    | 14.4                         | 4.60                          | 0,0145                  |  |  |
| 5                                | 120          | 17.8                     | 0.6                            | 30                      | 0,02                      | 13.8                         | 4.45                          | 0,0045                  |  |  |
| 6                                | 150          | 15.8                     | 2                              | 30                      | 0,0667                    | 11.8                         | 3.95                          | 0.0169                  |  |  |
| 7                                | 240          | 14                       | 1.8                            | 90                      | 0,02                      | 10                           | 3.50                          | 0,0057                  |  |  |
| 8                                | 270          | 13.2                     | 0.8                            | 30                      | 0,0267                    | 9.2                          | 3.30                          | 0,0081                  |  |  |
| 9                                | 360          | 8.7                      | 4.5                            | 90                      | 0,05                      | 4.7                          | 2.18                          | 0.0230                  |  |  |
| 10                               | 480          | 6.4                      | 2.3                            | 120                     | 0,0191                    | 2.4                          | 1.6                           | 0.0120                  |  |  |
| 11                               | 600          | 4.3                      | 2.1                            | 120                     | 0.0175                    | 0.3                          | 1.08                          | 0.0163                  |  |  |
| 12                               | 720          | 2.7                      | 1.6                            | 120                     | 0.0133                    | -1.3                         | 0.68                          | 0.0198                  |  |  |
| 13                               | 900          | 1.5                      | 1.2                            | 180                     | 0.0066                    | 2.5                          | 0.38                          | 0.0178                  |  |  |

Tabella 4 – Dati di campagna per la prova 2.

Alla luce dei risultati ottenuti per la prova P2, è possibile stimare un coefficiente di permeabilità media pari a 1.40x10<sup>-4</sup> [m/s].

#### 5.3 PROVA INFILTROMETRICA P3

Di seguito sono riportate tutte le registrazioni eseguite per l'esecuzione della prova P3.

| Prova3: Dati terreno |           |                    |                   |  |  |  |
|----------------------|-----------|--------------------|-------------------|--|--|--|
| N. lettura           | Tempo (s) | Livello acqua (cm) | Abbassamento (cm) |  |  |  |
| 1                    | 0         | 23                 | 8                 |  |  |  |
| 2                    | 30        | 18.7               | 4.3               |  |  |  |
| 3                    | 60        | 11.2               | 7.5               |  |  |  |
| 4                    | 90        | 7.4                | 3.8               |  |  |  |
| 5                    | 120       | 6.2                | 1.2               |  |  |  |
| 6                    | 150       | 3.8                | 2.4               |  |  |  |
| 7                    | 180       | 2.1                | 1.7               |  |  |  |

Tabella 5 – Dati di campagna per la prova 3.

|               | Prova 3: Rielaborazione dei dati |                          |                                |                         |                           |                              |                               |                         |  |  |
|---------------|----------------------------------|--------------------------|--------------------------------|-------------------------|---------------------------|------------------------------|-------------------------------|-------------------------|--|--|
| N.<br>lettura | Tempo<br>(s)                     | Livello<br>acqua<br>(cm) | Abbassamen<br>to acqua<br>(cm) | Intervallo<br>tempo (s) | Velocità<br>infiltrazione | Livello<br>idrico su<br>P.C. | Gradiente<br>idraulico<br>(-) | Permeabili<br>tà (cm/s) |  |  |
| 1             | 0                                | 23                       | 1025                           | 8                       | 100                       | 16                           | 3.29                          | 12                      |  |  |
| 2             | 30                               | 18.7                     | 4.3                            | 30                      | 0.14                      | 11.7                         | 2.67                          | 0.05                    |  |  |
| 3             | 60                               | 11.2                     | 7.5                            | 30                      | 0,25                      | 4.2                          | 1.60                          | 0.015                   |  |  |
| 4             | 90                               | 7.4                      | 3.8                            | 30                      | 0,12                      | 0.4                          | 1.06                          | 0.012                   |  |  |
| 5             | 120                              | 6.2                      | 1.2                            | 30                      | 0,04                      | -0.8                         | 0.89                          | 0.04                    |  |  |
| 6             | 150                              | 3.8                      | 2.4                            | 30                      | 0,08                      | -3.2                         | 0.54                          | 0.14                    |  |  |
| 7             | 180                              | 2.1                      | 1.7                            | 30                      | 0,05                      | -4.9                         | 0.30                          | 0.18                    |  |  |

Tabella 6 – Dati di campagna per la prova 2.

Alla luce dei risultati ottenuti per la prova P3, è possibile stimare un coefficiente di permeabilità media pari a 8.00x10<sup>-4</sup> [m/s].

### **ANHANG 2 - LABORTESTS**

## **APPENDICE 2 – PROVE DI LABORATORIO**

#### **GRENZEN VON ATTERBERG**

# Risultati di prova

Numero di laboratorio: 210542/008

Data di campionatura: Non determinata.

-

Nota:

Denominazione campione: Campionatura eseguita da: BH1 52,0-59,0 m cliente

LIMITI DI ATTERBERG

| Prova di taglio diretto                     |             |                 |                         |          |  |
|---------------------------------------------|-------------|-----------------|-------------------------|----------|--|
| Prova secondo                               |             | EN ISO 17892-10 |                         |          |  |
| Prova                                       |             | n°1             | n°2                     | n°3      |  |
| Cai                                         | atteristich | e iniziali de   | i provini               |          |  |
| Area di base del provino                    |             |                 | 900 cm² (30 cm x 30 cm) |          |  |
| Altezza iniziale del provino [mm]           |             | 155             | 155                     | 155      |  |
| Contenuto di umidità iniziale [%]           |             | 5,4             | 5,4                     | 5,4      |  |
| Massa volumica [Mg/m³]                      |             | 2,17            | 2,15                    | 2,17     |  |
| Massa volumica a secco [Mg/m³]              |             | 2,06            | 2,04                    | 2,06     |  |
| Velocità di spostamento del taglio [mm/min] |             | 0,10            | 0,10                    | 0,10     |  |
|                                             | Condi       | zioni di tag    | lio                     | <i>b</i> |  |
| Tensione verticale o [kPa]                  |             | 100             | 200                     | 400      |  |
| Tensione di taglio T [kPa]                  |             | 204             | <mark>-3</mark> 01      | 391      |  |
| Spostamento orizzontale s [mm]              |             | 18              | 25                      | 14       |  |
|                                             | Paran       | netri deriva    | te                      |          |  |
| Angolo di attrito φ [°]                     | 31,0        | Coesio          | ne c' [kPa]             | 158      |  |





Data di campionatura: Non determinata.

-

Nota:

| Prova di taglio diretto                     |                  |                         |           |
|---------------------------------------------|------------------|-------------------------|-----------|
| Prova secondo                               |                  | EN ISO 17892-10         |           |
| 1240340000                                  |                  |                         |           |
| Prova                                       | n°1              | n°2                     | n°3       |
| Ca                                          | ratteristiche in | iziali dei provini      |           |
| Area di base del provino                    |                  | 900 cm² (30 cm x 30 cm) | <i>in</i> |
| Altezza iniziale del provino (mm)           | 165              | 155                     | 160       |
| Contenuto di umidità iniziale [%]           | 5,3              | 5,3                     | 5,3       |
| Massa volumica [Mg/m³]                      | 2,15             | 2,18                    | 2,15      |
| Massa volumica a secco [Mg/m³]              | 2,05             | 2,07                    | 2,04      |
| Velocità di spostamento del taglio [mm/min] | 0,10             | 0,10                    | 0,10      |
|                                             | Condizion        | ni di taglio            |           |
| Tensione verticale o [kPa]                  | 100              | 200                     | 400       |
| Tensione di taglio T [kPa]                  | 149              | 301                     | 384       |
| Spostamento orizzontale s [mm]              | 29               | 28                      | 15        |
|                                             | Parametr         | i derivate              |           |
| Angolo di attrito o [°]                     | 36,0             | Coesione c' [kPa]       | 108       |





Denominazione campione: Campionatura eseguita da: BH1 42,0-48,0 m

cliente

Data di campionatura: Non determinata. -

Denominazione campione: Campionatura eseguita da:

BH1 33,0-40,0 m

cliente

|                                             |             | EN ISO              | 17892-10                |                    |
|---------------------------------------------|-------------|---------------------|-------------------------|--------------------|
|                                             |             |                     |                         |                    |
| Prova                                       | 8           | n°1                 | n°2                     | n°3                |
| Car                                         | atteristich | e iniziali dei      | provini                 |                    |
| Area di base del provino                    |             |                     | 900 cm² (30 cm x 30 cm) |                    |
| Altezza iniziale del provino [mm]           | 9           | 155                 | 160                     | 1 <mark>6</mark> 0 |
| Contenuto di umidità iniziale [%]           |             | 5,2                 | 5,2                     | 5,2                |
| Massa volumica [Mg/m³]                      |             | 2,24                | 2,21                    | 2,22               |
| Massa volumica a secco [Mg/m³]              |             | 2,13                | 2,10                    | 2,11               |
| Velocità di spostamento del taglio [mm/min] | ,           | 0 <mark>,1</mark> 0 | 0,10                    | 0,10               |
|                                             | Condi       | zioni di tagl       | io                      |                    |
| Tensione verticale σ [kPa]                  |             | 100                 | 200                     | 400                |
| Tensione di taglio T [kPa]                  | 0           | 137                 | 232                     | 340                |
| Spostamento orizzontale s [mm]              |             | 30                  | 30                      | 30                 |
|                                             | Paran       | netri derivat       | te                      |                    |
| Angolo di attrito o [°]                     | 33,5        | Coesion             | ie c' [kPa]             | 83                 |





Data di campionatura: Non determinata.

2

Nota:

| Prova di taglio diretto                   |                 |                    |                         |                     |
|-------------------------------------------|-----------------|--------------------|-------------------------|---------------------|
| Prova secondo                             |                 | ENIS               | O 17892-10              |                     |
| 51 (51 (51 (51 (51 (51 (51 (51 (51 (51 (  |                 | 2001 100           |                         |                     |
| Prova                                     |                 | n°1                | n°2                     | n°3                 |
|                                           | Caratteristiche | e iniziali d       | lei provini             |                     |
| Area di base del provino                  |                 |                    | 900 cm² (30 cm x 30 cm) |                     |
| Altezza iniziale del provino [mm]         | 1               | 155                | 160                     | 160                 |
| Contenuto di umidità iniziale [%]         | - ()            | 6,2                | 6,2                     | 6,2                 |
| Massa volumica [Mg/m³]                    | 1               | 2,44               | 2,43                    | 2,43                |
| Massa volumica a secco [Mg/m³]            | 1               | 2,29               | 2,29                    | 2,29                |
| Velocità di spostamento del taglio [mm/mi | in] 🦷 🤇         | 0, <mark>10</mark> | 0,10                    | 0 <mark>,1</mark> 0 |
|                                           | Condiz          | zioni di ta        | glio                    |                     |
| Tensione verticale o [kPa]                | 1               | 100                | 200                     | 400                 |
| Tensione di taglio T [kPa]                |                 | 217                | 366                     | 446                 |
| Spostamento orizzontale s [mm]            |                 | 15                 | 15                      | 30                  |
|                                           | Param           | netri deriv        | /ate                    |                     |
| Angolo di attrito φ [°]                   | 35,5            | Coesi              | ione c' [kPa]           | 177                 |





#### BH1 24,0-31,0 m

cliente

campione: Campionatura eseguita da:

Denominazione

Denominazione campione:

Campionatura eseguita da: BH1 17,0-23,0 m

cliente

Data di campionatura: Non determinata.

-

| Prova di taglio diretto                     |              |               |                         |                  |
|---------------------------------------------|--------------|---------------|-------------------------|------------------|
| Prova secondo                               |              | EN ISO        | 17892-10                |                  |
|                                             |              |               |                         |                  |
| Prova                                       |              | n°1           | n°2                     | n°3              |
| Ca                                          | ratteristich | e iniziali de | i provini               |                  |
| Area di base del provino                    |              |               | 900 cm² (30 cm x 30 cm) |                  |
| Altezza iniziale del provino [mm]           | 8            | 160           | 160                     | 160              |
| Contenuto di umidità iniziale [%]           | 8            | 5,2           | 5,2                     | 5,2              |
| Massa volumica [Mg/m³]                      |              | 2,26 2,29     |                         | 2,26             |
| Massa volumica a secco [Mg/m³]              |              | 2,14          | 2,17                    | 2,15             |
| Velocità di spostamento del taglio [mm/min] |              | D,10          | 0,10                    | 0,10             |
|                                             | Condi        | zioni di tag  | lio                     | (n).             |
| Tensione verticale σ [kPa]                  | 111          | 100           | 200                     | <mark>400</mark> |
| Tensione di taglio T [kPa]                  |              | 187           | 277                     | 403              |
| Spostamento orizzontale s [mm]              |              | 15            | 26                      | 15               |
| 78                                          | Paran        | netri deriva  | te I                    |                  |
| Angolo di attrito φ [°]                     | 35,5         | Coesion       | ne c' [kPa]             | 124              |





Data di campionatura: Non determinata.

-

Nota:

| Prova di taglio diretto                     |               |                |                                     |      |
|---------------------------------------------|---------------|----------------|-------------------------------------|------|
| Prova secondo                               |               | EN ISO         | 17892-10                            |      |
| Prova                                       |               | n°1            | n°2                                 | n°3  |
| C                                           | aratteristich | e iniziali dei | provini                             |      |
| Area di base del provino                    |               |                | 900 cm <sup>2</sup> (30 cm x 30 cm) |      |
| Altezza iniziale del provino [mm]           | 2             | 155            | 155                                 | 155  |
| Contenuto di umidità iniziale [%]           |               | 6,2            | 6,2                                 | 6,2  |
| Massa volumica [Mg/m³]                      | 100           | 2,25           | 2,26                                | 2,24 |
| Massa volumica a secco [Mg/m³]              |               | 2,12           | 2,13                                | 2,11 |
| Velocità di spostamento del taglio [mm/min] |               | 0,10 0,10      |                                     | 0,10 |
|                                             | Condia        | zioni di tagl  | io                                  | 14-  |
| Tensione verticale σ [kPa]                  | 9             | 100            | 200                                 | 400  |
| Tensione di taglio T [kPa]                  | 8             | 133            | 274                                 | 429  |
| Spostamento orizzontale s [mm]              |               | 30             | 16                                  | 23   |
|                                             | Paran         | netri derivat  | te                                  |      |
| Angolo di attrito ( [°]                     | 44,0          | Coesion        | ie c' [kPa]                         | 55   |





#### BH1 6,0-15,0 m

campione: Campionatura cliente eseguita da:

Denominazione

#### Risultati di prova

Numero di laboratorio: 210542/001

Data di campionatura: Non determinata.

2

Nota:

Denominazione campione: Campionatura eseguita da: BH2 69,00 - 77,00 m

cliente

| Prova di taglio diretto                |                                          |                |                         |      |
|----------------------------------------|------------------------------------------|----------------|-------------------------|------|
| Prova secondo                          |                                          | ENISO          | 17892-10                |      |
| Prova                                  |                                          | nº1            | n°2                     | n°3  |
|                                        | Caratteristich                           | e iniziali dei | provini                 |      |
| Area di base del provino               |                                          |                | 900 cm² (30 cm x 30 cm) |      |
| Altezza iniziale del provino [mm]      |                                          | 165            | 170                     | 175  |
| Contenuto di umidità iniziale [%]      | le l | 4,2            | 4,2                     | 4,2  |
| Massa volumica [Mg/m³]                 | l. S                                     | 2,19           | 2,12                    | 2,14 |
| Massa volumica a secco [Mg/m³] 2       |                                          | 2,10 2,04      |                         | 2,05 |
| Velocità di spostamento del taglio [mi | m/min]                                   | 0,10 0,10      |                         | 0,10 |
|                                        | Condi                                    | zioni di tagl  | io                      |      |
| Tensione verticale σ [kPa]             |                                          | 100            | 200                     | 400  |
| Tensione di taglio T [kPa]             | <u> </u>                                 | 122            | 179                     | 326  |
| Spostamento orizzontale s [mm]         |                                          | 26 1           |                         | 22   |
|                                        | Paran                                    | netri derivat  | te                      |      |
| Angolo di attrito φ [°]                | 34,5                                     | Coesion        | ie c' [kPa]             | 48   |





Data di campionatura: Non determinata.

-

#### an determine

#### Denominazione campione: Campionatura eseguita da:

BH2 60,00 - 68,00 m

cliente

| Prova di taglio diretto                     |                |           |                         |      |
|---------------------------------------------|----------------|-----------|-------------------------|------|
| Prova secondo                               |                | ENIS      | SO 17892-10             |      |
| Prova                                       | n°             | 1         | n°2                     | n°3  |
| Ca                                          | atteristiche i | niziali   | dei provini             |      |
| Area di base del provino                    |                |           | 900 cm² (30 cm x 30 cm) |      |
| Altezza iniziale del provino [mm]           | 16             | D         | 160                     | 150  |
| Contenuto di umidità iniziale [%]           | 3,             | 1         | 3,1                     | 3,1  |
| Massa volumica [Mg/m²]                      | 2,1            | 2         | 2,11                    | 2,15 |
| Massa volumica a secco [Mg/m³]              | 2,0            | 6         | 2,05                    | 2,09 |
| Velocità di spostamento del taglio [mm/min] | 0,1            | 0         | 0,10                    | 0,10 |
|                                             | Condizio       | oni di ta | Iglio                   | 9.   |
| Tensione verticale σ [kPa]                  | 10             | D         | 200                     | 400  |
| Tensione di taglio T [kPa]                  | 11             | В         | 228                     | 393  |
| Spostamento orizzontale s [mm]              | 6              |           | 16                      | 15   |
|                                             | Parame         | tri deri  | vate                    |      |
| Angolo di attrito φ [°]                     | 42,0           | Coes      | sione c' [kPa]          | 35   |





Data di campionatura: Non determinata. -

Denominazione campione: Campionatura eseguita da:

BH2 41,00 - 48,00 m

cliente

| Prova di taglio diretto                     |               |           |                         |      |
|---------------------------------------------|---------------|-----------|-------------------------|------|
| Prova secondo                               |               | ENI       | SO 17892-10             |      |
| Prova                                       | n             | I°1       | nº2                     | n°3  |
| Car                                         | ratteristiche | iniziali  | dei provini             | -    |
| Area di base del provino                    |               |           | 900 cm² (30 cm x 30 cm) | 2    |
| Altezza iniziale del provino [mm]           | 1             | 65        | 155                     | 155  |
| Contenuto di umidità iniziale [%]           | 4             | 1,4       | 4,4                     | 4,4  |
| Massa volumica [Mg/m³]                      | 2             | ,13       | 2,18                    | 2,19 |
| Massa volumica a secco [Mg/m³]              | 2             | ,04       | 2,09                    | 2,10 |
| Velocità di spostamento del taglio [mm/min] | 0             | ,10       | 0,10                    | 0,10 |
|                                             | Condiz        | ioni di t | aglio                   |      |
| Tensione verticale σ [kPa]                  | 1             | 00        | 200                     | 400  |
| Tensione di taglio т [kPa]                  | 1             | 24        | 256                     | 388  |
| Spostamento orizzontale s [mm]              |               | 11        | 29                      | 16   |
| 70-                                         | Param         | etri der  | vate                    | 5    |
| Angolo di attrito φ [°]                     | 40,5          | Coe       | sione c' [kPa]          | 59   |





| Prova di taglio diretto                     |                  |                         |          |
|---------------------------------------------|------------------|-------------------------|----------|
| Prova secondo                               |                  | EN ISO 17892-10         |          |
| Prova                                       | n°1              | n°2                     | n°3      |
| Ca                                          | ratteristiche in | iziali dei provini      | •        |
| Area di base del provino                    |                  | 900 cm² (30 cm x 30 cm) |          |
| Altezza iniziale del provino [mm]           | 155              | 160                     | 160      |
| Contenuto di umidità iniziale [%]           | 3,5              | 3,5                     | 3,5      |
| Massa volumica [Mg/m³]                      | 2,12             | 2,06                    | 2,07     |
| Massa volumica a secco [Mg/m³]              | 2,05             | 1,99                    | 2,00     |
| Velocità di spostamento del taglio [mm/min] | 0,10             | 0,10                    | 0,10     |
|                                             | Condizio         | ni di taglio            |          |
| Tensione verticale o [kPa]                  | 100              | 200                     | 400      |
| Tensione di taglio т [kPa]                  | 121              | 185                     | 332      |
| Spostamento orizzontale s [mm]              | 30               | 8                       | 16       |
| <i>2</i> /                                  | Parametr         | i derivate              | 5)<br>22 |
| Angolo di attrito φ [°]                     | 35,5             | Coesione c' [kPa]       | 47       |





Denominazione campione:

Campionatura

eseguita da:

BH2 30,00 - 37,00 m

cliente

Data di campionatura: Non determinata.

-

| Prova di taglio diretto                     |              |              |                         |            |
|---------------------------------------------|--------------|--------------|-------------------------|------------|
| Prova secondo                               |              | EN IS        | O 17892-10              |            |
| Prova nº1                                   |              | nº1          | n°2                     | n°3        |
| Ca                                          | ratteristich | e iniziali o | lei provini             |            |
| Area di base del provino                    |              |              | 900 cm² (30 cm x 30 cm) | <b>a</b> . |
| Altezza iniziale del provino [mm]           | i            | 155          | 160                     | 155        |
| Contenuto di umidità iniziale [%]           |              | 4,1          | 4,1                     | 4,1        |
| Massa volumica [Mg/m³]                      |              | 2,10         | 2,07                    | 2,14       |
| Massa volumica a secco [Mg/m3]              | 1            | 2,02         | 1,99                    | 2,05       |
| Velocità di spostamento del taglio [mm/min] |              | 0,10         | 0,10                    | 0,10       |
|                                             | Condi        | zioni di ta  | glio                    |            |
| Tensione verticale σ [kPa]                  |              | 100          | 200                     | 400        |
| Tensione di taglio т [kPa]                  |              | 146          | 260                     | 379        |
| Spostamento orizzontale s [mm]              |              | 30 30        |                         | 15         |
|                                             | Paran        | netri deriv  | /ate                    | 2<br>X     |
| Angolo di attrito φ [°]                     | 37,0         | Coes         | ione c' [kPa]           | 87         |





Data di campionatura: Non determinata. Nota: - Denominazione campione: Campionatura eseguita da: BH2 21,00 - 28,00 m

cliente

| Prova di taglio diretto                    |                                       |         |                         |      |
|--------------------------------------------|---------------------------------------|---------|-------------------------|------|
| Prova secondo                              |                                       | J.      | EN ISO 17892-10         |      |
| Prova                                      | 1                                     | nº1     | n°2                     | n°3  |
|                                            | Caratteristiche                       | e inizi | ali dei provini         |      |
| Area di base del provino                   |                                       |         | 900 cm² (30 cm x 30 cm) |      |
| Altezza iniziale del provino [mm]          | e e e e e e e e e e e e e e e e e e e | 155     | 165                     | 160  |
| Contenuto di umidità iniziale [%]          | j - 1                                 | 2,7     | 2,7                     | 2,7  |
| Massa volumica [Mg/m³]                     | 1                                     | 2,19    | 2,02                    | 2,14 |
| Massa volumica a secco [Mg/m³]             | 3                                     | 2,13    | 1,97                    | 2,09 |
| Velocità di spostamento del taglio [mm/min | 1                                     | 0,10    | 0,10                    | 0,10 |
|                                            | Condia                                | zioni   | di taglio               |      |
| Tensione verticale σ [kPa]                 | 3                                     | 100     | 200                     | 400  |
| Tensione di taglio τ [kPa]                 | Ĵ. S                                  | 121     | 247                     | 367  |
| Spostamento orizzontale s [mm]             |                                       | 30      | 30                      | 30   |
|                                            | Paran                                 | netri d | erivate                 |      |
| Angolo di attrito φ [°]                    | 38,0                                  | (       | Coesione c' [kPa]       | 62   |





128

| Prova di taglio diretto                     |                  | 0                       |      |
|---------------------------------------------|------------------|-------------------------|------|
| Prova secondo                               |                  | EN ISO 17892-10         |      |
| Prova                                       | n°1              | n°2                     | nº3  |
| Ca                                          | ratteristiche in | iziali dei provini      | 8.   |
| Area di base del provino                    |                  | 900 cm² (30 cm x 30 cm) |      |
| Altezza iniziale del provino [mm]           | 165              | 160                     | 155  |
| Contenuto di umidità iniziale [%]           | 3,0              | 3,0                     | 3,0  |
| Massa volumica [Mg/m²]                      | 2,08             | 2,13                    | 2,17 |
| Massa volumica a secco [Mg/m3]              | 2,02             | 2,07                    | 2,10 |
| Velocità di spostamento del taglio [mm/min] | 0,10             | 0,10                    | 0,10 |
| 20                                          | Condizior        | ni di taglio            |      |
| Tensione verticale o [kPa]                  | 100              | 200                     | 400  |
| Tensione di taglio T [kPa]                  | 131              | 214                     | 357  |
| Spostamento orizzontale s [mm]              | 22               | 29                      | 30   |
|                                             | Parametr         | i derivate              |      |
| Angolo di attrito φ [°]                     | 37,0             | Coesione c' [kPa]       | 59   |





#### **GRENZEN VON ATTERBERG**

#### LIMITI DI ATTERBERG



40 50 60 LIMITE DI LIQUIDITÀ [%]

Diagramma di plasticità BH1

ANHANG 3 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 1 APPENDICE 3 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 1

# **PLAXIS Report**

1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Materials plot





1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Materials plot





1.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Materials plot





1.1.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Materials plot





1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Materials plot





1.1.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Materials plot





1.1.1.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Materials plot





# 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1  | Strato 2  | Strato 3  | Strato 4  | Strato 5  |
|-----------------------|-------|-----------|-----------|-----------|-----------|-----------|
| Identification number |       | 1         | 2         | 3         | 4         | 5         |
| Drainage type         |       | Drained   | Drained   | Drained   | Drained   | Drained   |
| Colour                |       |           |           |           |           |           |
| Comments              |       |           |           |           |           |           |
| $\gamma$ unsat        | kN/m³ | 20,00     | 20,00     | 20,00     | 20,00     | 20,00     |
| $\gamma$ sat          | kN/m³ | 20,00     | 20,00     | 20,00     | 20,00     | 20,00     |
| Dilatancy cut-off     |       | No        | No        | No        | No        | No        |
| e init                |       | 0,5000    | 0,5000    | 0,5000    | 0,5000    | 0,5000    |
| e min                 |       | 0,000     | 0,000     | 0,000     | 0,000     | 0,000     |
| e max                 |       | 999,0     | 999,0     | 999,0     | 999,0     | 999,0     |
| Rayleigh a            |       | 0,000     | 0,000     | 0,000     | 0,000     | 0,000     |
| Rayleigh β            |       | 0,000     | 0,000     | 0,000     | 0,000     | 0,000     |
| E 50 ref              | kN/m² | 25,00E3   | 40,00E3   | 50,00E3   | 30,00E3   | 70,00E3   |
| E oed ref             | kN/m² | 23,55E3   | 36,94E3   | 45,27E3   | 28,84E3   | 66,76E3   |
| E ur ref              | kN/m² | 75,00E3   | 120,0E3   | 150,0E3   | 90,00E3   | 210,0E3   |
| power (m)             |       | 0,000     | 0,000     | 0,000     | 0,000     | 0,4000    |
| Use alternatives      |       | No        | No        | No        | No        | No        |
| С с                   |       | 0,01465   | 9,339E-3  | 7,621E-3  | 0,01196   | 5,167E-3  |
|                       |       | Charles 1 | Churche 2 | Churtha D | Charles A | Charles 5 |
| Identification        |       | Strato 1  | Strato 2  | Strato 3  | Strato 4  | Strato 5  |

| C s                                                                                                                                |                | 4,140E-3                                                                              | 2,587E-3                                                                                 | 2,070E-3                                                                              | 3,450E-3                                                                              | 1,479E-3                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| e init                                                                                                                             |                | 0,5000                                                                                | 0,5000                                                                                   | 0,5000                                                                                | 0,5000                                                                                | 0,5000                                                                                |
| C ref                                                                                                                              | kN/m²          | 5,000                                                                                 | 0,000                                                                                    | 0,000                                                                                 | 0,000                                                                                 | 0,000                                                                                 |
| φ (phi)                                                                                                                            | 0              | 38,00                                                                                 | 40,00                                                                                    | 42,00                                                                                 | 36,00                                                                                 | 36,00                                                                                 |
| ψ (psi)                                                                                                                            | 0              | 0,000                                                                                 | 0,000                                                                                    | 0,000                                                                                 | 0,000                                                                                 | 0,000                                                                                 |
| Set to default values                                                                                                              |                | No                                                                                    | No                                                                                       | No                                                                                    | No                                                                                    | No                                                                                    |
| V ur                                                                                                                               |                | 0,2000                                                                                | 0,2000                                                                                   | 0,2000                                                                                | 0,2000                                                                                | 0,2000                                                                                |
| p ref                                                                                                                              | kN/m²          | 100,0                                                                                 | 100,0                                                                                    | 100,0                                                                                 | 100,0                                                                                 | 100,0                                                                                 |
| K onc                                                                                                                              |                | 0,3943                                                                                | 0,3695                                                                                   | 0,3449                                                                                | 0,4194                                                                                | 0,4217                                                                                |
| C inc                                                                                                                              | kN/m²/m        | 0,000                                                                                 | 0,000                                                                                    | 0,000                                                                                 | 0,000                                                                                 | 0,000                                                                                 |
| У ref                                                                                                                              | m              | 0,000                                                                                 | 0,000                                                                                    | 0,000                                                                                 | 0,000                                                                                 | 608,0                                                                                 |
| R f                                                                                                                                |                | 0,9000                                                                                | 0,9000                                                                                   | 0,9000                                                                                | 0,9000                                                                                | 0,9000                                                                                |
|                                                                                                                                    |                |                                                                                       |                                                                                          |                                                                                       |                                                                                       |                                                                                       |
| Tension cut-off                                                                                                                    |                | Yes                                                                                   | Yes                                                                                      | Yes                                                                                   | Yes                                                                                   | Yes                                                                                   |
| Tension cut-off<br>Tensile strength                                                                                                | kN/m²          | Yes<br>0,000                                                                          | Yes<br>0,000                                                                             | Yes<br>0,000                                                                          | Yes<br>0,000                                                                          | Yes<br>0,000                                                                          |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour                                                                         | kN/m²          | Yes<br>0,000<br>Standard                                                              | Yes<br>0,000<br>Standard                                                                 | Yes<br>0,000<br>Standard                                                              | Yes<br>0,000<br>Standard                                                              | Yes<br>0,000<br>Standard                                                              |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B                                                           | kN/m²          | Yes<br>0,000<br>Standard<br>0,9866                                                    | Yes<br>0,000<br>Standard<br>0,9866                                                       | Yes<br>0,000<br>Standard<br>0,9866                                                    | Yes<br>0,000<br>Standard<br>0,9866                                                    | Yes<br>0,000<br>Standard<br>0,9866                                                    |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B                                                           | kN/m²          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950                                          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950                                             | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950                                          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950                                          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950                                          |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B<br>V u<br>K wref / n                                      | kN/m²<br>kN/m² | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,073E6                               | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>4,917E6                                  | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>6,146E6                               | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,687E6                               | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>8,604E6                               |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B<br>V u<br>K w,ref / n<br>Stiffness                        | kN/m²          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,073E6<br>Standard                   | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>4,917E6<br>Standard                      | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>6,146E6<br>Standard                   | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,687E6<br>Standard                   | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>8,604E6<br>Standard                   |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B<br>V u<br>K wyer / n<br>Stiffness<br>Strength             | kN/m²<br>kN/m² | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,073E6<br>Standard<br>Rigid          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>4,917E6<br>Standard<br>Rigid             | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>6,146E6<br>Standard<br>Rigid          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,687E6<br>Standard<br>Rigid          | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>8,604E6<br>Standard<br>Rigid          |
| Tension cut-off<br>Tensile strength<br>Undrained behaviour<br>Skempton-B<br>V u<br>K w,ref / n<br>Stiffness<br>Strength<br>R inter | kN/m²<br>kN/m² | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,073E6<br>Standard<br>Rigid<br>1,000 | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>4,917E6<br>Standard<br>Standard<br>1,000 | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>6,146E6<br>Standard<br>Rigid<br>1,000 | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>3,687E6<br>Standard<br>Rigid<br>1,000 | Yes<br>0,000<br>Standard<br>0,9866<br>0,4950<br>8,604E6<br>Standard<br>Rigid<br>1,000 |

| Identification            |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
|---------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| $\delta$ inter            |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability        |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                         | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination         |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| $K_{0,x} = K_{0,z}$       |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                     |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K <sub>0,z</sub>          |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                       |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| POP                       | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                  |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                      |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                    | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm              | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 μm - 2 mm              | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults              |          | None        | None        | None        | None        | None        |
| k ×                       | m/day    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| kу                        | m/day    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| -Ψ unsat                  | m        | 10,00E3     | 10,00E3     | 10,00E3     | 10,00E3     | 10,00E3     |
| e init                    |          | 0,5000      | 0,5000      | 0,5000      | 0,5000      | 0,5000      |
| S s                       | 1/m      | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| C k                       |          | 1000E12     | 1000E12     | 1000E12     | 1000E12     | 1000E12     |

| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
|-------------------------|--------|------------|------------|------------|------------|------------|
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| f Tv                    |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

#### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       | •       |         | •       |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 60,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 23,08E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 80,77E3 | 6731    | 40,38E3 |
|                       |       |         |         |         |         |
| Identification        |       | Rock    | A       | F1      | GNEISS  |
| C ref                 | kN/m² | 500,0   | 45,00   | 0,000   | 40,00   |
| φ (phi)                 | 0       | 35,00    | 37,00    | 20,00    | 36,00    |
|-------------------------|---------|----------|----------|----------|----------|
| ψ (psi)                 | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                     | m/s     | 137,4    | 103,8    | 30,71    | 75,23    |
| V <sub>p</sub>          | m/s     | 257,0    | 194,2    | 57,46    | 140,7    |
| Set to default values   |         | Yes      | Yes      | Yes      | Yes      |
| E inc                   | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> <sub>ref</sub> | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                   | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| У <sub>ref</sub>        | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off         |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength        | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour     |         | Standard | Standard | Standard | Standard |
| Skempton-B              |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                     |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n  | kN/m²   | 3,750E6  | 2,250E6  | 187,5E3  | 1,125E6  |
| Stiffness               |         | Standard | Standard | Standard | Standard |
| Strength                |         | Rigid    | Rigid    | Rigid    | Rigid    |
| R inter                 |         | 1,000    | 1,000    | 1,000    | 1,000    |
| Identification          |         | Rock     | А        | F1       | GNEISS   |
| Consider gap closure    |         | Yes      | Yes      | Yes      | Yes      |

| $\delta$ inter               |          | 0,000         | 0,000         | 0,000         | 0,000         |
|------------------------------|----------|---------------|---------------|---------------|---------------|
| Cross permeability           |          | Impermeable   | Impermeable   | Impermeable   | Impermeable   |
| Drainage conductivity, dk    | m³/day/m | 0,000         | 0,000         | 0,000         | 0,000         |
| R                            | m² K/kW  | 0,000         | 0,000         | 0,000         | 0,000         |
| K <sub>0</sub> determination |          | Automatic     | Automatic     | Automatic     | Automatic     |
| $K_{0,x} = K_{0,z}$          |          | Yes           | Yes           | Yes           | Yes           |
| K 0,x                        |          | 0,4264        | 0,3982        | 0,6580        | 0,4122        |
| <b>K</b> 0,z                 |          | 0,4264        | 0,3982        | 0,6580        | 0,4122        |
| Data set                     |          | Standard      | USDA          | Standard      | USDA          |
| Model                        |          | Van Genuchten | Van Genuchten | Van Genuchten | Van Genuchten |
| Туре                         |          | Coarse        | Coarse        | Coarse        | Coarse        |
| Туре                         |          | Sand          | Sand          | Sand          | Sand          |
| < 2 µm                       | %        | 10,00         | 4,000         | 10,00         | 4,000         |
| 2 µm - 50 µm                 | %        | 13,00         | 4,000         | 13,00         | 4,000         |
| 50 µm - 2 mm                 | %        | 77,00         | 92,00         | 77,00         | 92,00         |
| Use defaults                 |          | None          | None          | None          | None          |
| k x                          | m/day    | 0,000         | 0,000         | 0,000         | 0,000         |
| k <sub>v</sub>               | m/day    | 0,000         | 0,000         | 0,000         | 0,000         |
| Identification               |          | Rock          | А             | F1            | GNEISS        |
| -ψ unsat                     | m        | 10,00E3       | 10,00E3       | 10,00E3       | 10,00E3       |

| e init                          |        | 0,5000                    | 0,5000     | 0,5000     | 0,5000     |
|---------------------------------|--------|---------------------------|------------|------------|------------|
| S <sub>s</sub>                  | 1/m    | 0,000                     | 0,000      | 0,000      | 0,000      |
| C k                             |        | 1000E12                   | 1000E12    | 1000E12    | 1000E12    |
| C s                             | kJ/t/K | 0,000                     | 0,000      | 0,000      | 0,000      |
| λs                              | kW/m/K | 0,000                     | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>                  | t/m³   | 0,000                     | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion         |        | Volumetric                | Volumetric | Volumetric | Volumetric |
| a_s                             | 1/K    | 0,000                     | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>                  | m²/day | 0,000                     | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>                 |        | 0,000                     | 0,000      | 0,000      | 0,000      |
| Unfrozen water content          |        | None                      | None       | None       | None       |
| 1.1.3.1 Calculation information |        |                           |            |            |            |
| Calculation information         |        |                           |            |            |            |
| Step info                       |        |                           |            |            |            |
| Phase                           | Ini    | tial phase [InitialPhase] |            |            |            |
| Step                            | In     | tial                      |            |            |            |
| Calulation mode                 | Cla    | assical mode              |            |            |            |
| Step type                       | Gr     | avity loading             |            |            |            |
| Solver type                     | Pic    | :05                       |            |            |            |
| Kernel type                     | 64     | bit                       |            |            |            |
| Extrapolation factor            | 1,(    | )25                       |            |            |            |

| Relative stiffness           | 0,3786                  |        |                     |        |
|------------------------------|-------------------------|--------|---------------------|--------|
| Multipliers                  |                         |        |                     |        |
| Soil weight                  |                         |        | $\Sigma M$ Weight   | 1,000  |
| Strength reduction factor    | M sf                    | 0,000  | ΣM sf               | 1,000  |
| Time                         | Increment               | 0,000  | End time            | 0,000  |
| Staged construction          |                         |        |                     |        |
| Active proportion total area | M <sub>Area</sub>       | 0,3026 | $\Sigma M_{Area}$   | 0,9007 |
| Active proportion of stage   | M Stage                 | 0,3360 | ΣM <sub>Stage</sub> | 1,000  |
| Calculation information      |                         |        |                     |        |
| Forces                       |                         |        |                     |        |
| F x                          | 0,000 kN/m              |        |                     |        |
| F <sub>Y</sub>               | 0,000 kN/m              |        |                     |        |
| Consolidation                |                         |        |                     |        |
| Realised P Excess, Max       | 0,000 kN/m <sup>2</sup> |        |                     |        |

#### 1.1.3.2 Calculation information Calculation information Step info Phase Phase\_1 [Phase\_1] Step Initial Calulation mode Classical mode Step type Plastic Updated mesh False Solver type Picos Kernel type 64 bit Extrapolation factor 0,9878 Relative stiffness 0,4068 Multipliers Soil weight $\Sigma M$ Weight 1,000 Strength reduction factor $M_{sf}$ 0,000 $\Sigma M_{sf}$ 1,000 Time Increment 0,000 End time 0,000 Staged construction Active proportion total area M Area 0,02217 $\Sigma M_{\text{Area}}$ 0,9455 Calculation information Active proportion of stage 0,3082 1,000 M <sub>Stage</sub> $\Sigma M_{Stage}$

| Forces                |                         |
|-----------------------|-------------------------|
| Fx                    | 0,000 kN/m              |
| Fγ                    | 0,000 kN/m              |
| Consolidation         |                         |
| Realised P Excess,Max | 0,000 kN/m <sup>2</sup> |

| 1.1.3.3 Calculation information |                    |         |                      |        |
|---------------------------------|--------------------|---------|----------------------|--------|
| Calculation information         |                    |         |                      |        |
| Step info                       |                    |         |                      |        |
| Phase                           | Phase_2 [Phase_2]  |         |                      |        |
| Step                            | Initial            |         |                      |        |
| Calulation mode                 | Classical mode     |         |                      |        |
| Step type                       | Plastic            |         |                      |        |
| Updated mesh                    | False              |         |                      |        |
| Solver type                     | Picos              |         |                      |        |
| Kernel type                     | 64 bit             |         |                      |        |
| Extrapolation factor            | 0,7471             |         |                      |        |
| Relative stiffness              | 0,4281             |         |                      |        |
| Multipliers                     |                    |         |                      |        |
| Soil weight                     |                    |         | ΣM <sub>Weight</sub> | 1,000  |
| Strength reduction factor       | M <sub>sf</sub>    | 0,000   | ΣM sf                | 1,000  |
| Time                            | Increment          | 0,000   | End time             | 0,000  |
| Staged construction             |                    |         |                      |        |
| Active proportion total area    | M <sub>Area</sub>  | 0,01162 | ΣM <sub>Area</sub>   | 0,9766 |
| Calculation information         |                    |         |                      |        |
| Active proportion of stage      | M <sub>Stage</sub> | 0,2389  | ΣM <sub>Stage</sub>  | 1,000  |

| Forces                 |                         |
|------------------------|-------------------------|
| Fx                     | 0,000 kN/m              |
| Fγ                     | 0,000 kN/m              |
| Consolidation          |                         |
| Realised P Excess, Max | 0,000 kN/m <sup>2</sup> |

#### 1.1.3.4 Calculation information Calculation information Step info Phase\_4 [Phase\_4] Phase Initial Step Calulation mode Classical mode Step type Plastic Updated mesh False Solver type Picos Kernel type 64 bit Extrapolation factor 0,9997 Relative stiffness 0,3475 Multipliers Soil weight ΣM <sub>Weight</sub> 1,000 Strength reduction factor $M_{sf}$ 0,000 $\Sigma M_{sf}$ 1,000

| Time                         | Increment          | 0,000    | End time           | 0,000  |
|------------------------------|--------------------|----------|--------------------|--------|
| Staged construction          |                    |          |                    |        |
| Active proportion total area | M <sub>Area</sub>  | 2,056E-3 | ΣM <sub>Area</sub> | 0,9995 |
| Calculation information      |                    |          |                    |        |
| Active proportion of stage   | M <sub>Stage</sub> | 0,2821   | $\Sigma M_{Stage}$ | 1,000  |

| Forces                 |                         |
|------------------------|-------------------------|
| Fx                     | 0,000 kN/m              |
| Fγ                     | 0,000 kN/m              |
| Consolidation          |                         |
| Realised P Excess, Max | 0,000 kN/m <sup>2</sup> |

#### 1.1.3.5 Calculation information Calculation information Step info Phase Phase\_5\_static [Phase\_5] Step Initial Calulation mode Classical mode Step type Plastic Updated mesh False Solver type Picos Kernel type 64 bit Extrapolation factor 1,060 Relative stiffness 0,1980 Multipliers Soil weight $\Sigma M$ Weight 1,000 Strength reduction factor 0,000 1,000 $M_{sf}$ $\Sigma M_{sf}$ Time Increment 0,000 End time 0,000 Staged construction Active proportion total area M <sub>Area</sub> 0,2629E-3 $\Sigma M_{Area}$ 1,000 Calculation information Active proportion of stage 0,2386 1,000 M <sub>Stage</sub> $\Sigma M$ Stage

| Forces                |                         |
|-----------------------|-------------------------|
| Fx                    | 0,000 kN/m              |
| Fγ                    | 0,000 kN/m              |
| Consolidation         |                         |
| Realised P Excess,Max | 0,000 kN/m <sup>2</sup> |

#### 1.1.3.6 Calculation information

| Calculation information      |                            |       |                    |       |
|------------------------------|----------------------------|-------|--------------------|-------|
| Step info                    |                            |       |                    |       |
| Phase                        | Phase_8 _seismic [Phase_8] |       |                    |       |
| Step                         | Initial                    |       |                    |       |
| Calulation mode              | Classical mode             |       |                    |       |
| Step type                    | Plastic                    |       |                    |       |
| Updated mesh                 | False                      |       |                    |       |
| Solver type                  | Picos                      |       |                    |       |
| Kernel type                  | 64 bit                     |       |                    |       |
| Extrapolation factor         | 0,4567                     |       |                    |       |
| Relative stiffness           | 0,1528                     |       |                    |       |
| Multipliers                  |                            |       |                    |       |
| Soil weight                  |                            |       | $\Sigma M$ weight  | 1,000 |
| Strength reduction factor    | M sf                       | 0,000 | $\Sigma M_{sf}$    | 1,000 |
| Time                         | Increment                  | 0,000 | End time           | 0,000 |
| Staged construction          |                            |       |                    |       |
| Active proportion total area | M <sub>Area</sub>          | 0,000 | ΣM <sub>Area</sub> | 1,000 |
|                              |                            |       |                    |       |
| Calculation information      |                            |       |                    |       |

M <sub>Stage</sub>

0,07614

 $\Sigma M_{Stage}$ 

1,000

Active proportion of stage

| Forces                     |                         |  |  |  |
|----------------------------|-------------------------|--|--|--|
| Fx                         | 0,000 kN/m              |  |  |  |
| FY                         | 0,000 kN/m              |  |  |  |
| Consolidation              |                         |  |  |  |
| Realised P Excess,Max      | 0,000 kN/m <sup>2</sup> |  |  |  |
| Pseudo-static acceleration |                         |  |  |  |
| X                          | 5,000E-3 g              |  |  |  |
| Υ                          | 3,000E-3 g              |  |  |  |

#### 1.1.3.7 Calculation information Calculation information Step info Phase Phase\_3 [Phase\_3] Step Initial Calulation mode Classical mode Step type Plastic Updated mesh False Solver type Picos Kernel type 64 bit Extrapolation factor 0,03150 Relative stiffness 0,3463 Multipliers Soil weight $\Sigma M$ Weight 1,000 Strength reduction factor $M_{sf}$ 0,000 $\Sigma M_{sf}$ 1,000 Time Increment 0,000 End time 0,000 Staged construction Active proportion total area $M_{\text{Area}}$ 0,2953E-3 ΣM <sub>Area</sub> 0,9954 Calculation information Active proportion of stage 9,330E-3 1,000 $M_{\text{Stage}}$ $\Sigma M$ Stage

| Forces                |                         |
|-----------------------|-------------------------|
| Fx                    | 0,000 kN/m              |
| Fr                    | 0,000 kN/m              |
| Consolidation         |                         |
| Realised P Excess,Max | 0,000 kN/m <sup>2</sup> |

# 1.1.4 Calculation information per phase

| Identification               | Phase | Start from Calculation type | Loading input       | Pore pressure | Time step [day] | First step | Last step |
|------------------------------|-------|-----------------------------|---------------------|---------------|-----------------|------------|-----------|
| Initial phase [InitialPhase] | 0     | N/A Gravity loading         | N/A                 | Phreatic      | 0,000           | 0          | 13        |
| Phase_1 [Phase_1]            | 8     | 0 Plastic                   | Staged construction | Phreatic      | 0,000           | 14         | 18        |
| Phase_2 [Phase_2]            | 9     | 8 Plastic                   | Staged construction | Phreatic      | 0,000           | 19         | 22        |
| Phase_3 [Phase_3]            | 10    | 9 Plastic                   | Staged construction | Phreatic      | 0,000           | 36         | 39        |
| Phase_4 [Phase_4]            | 11    | 10 Plastic                  | Staged construction | Phreatic      | 0,000           | 23         | 25        |
| Phase_5_static [Phase_5]     | 12    | 11 Plastic                  | Staged construction | Phreatic      | 0,000           | 26         | 28        |
| Phase_8 _seismic [Phase_8]   | 2     | 12 Plastic                  | Staged construction | Phreatic      | 0,000           | 29         | 32        |

# 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor | Relative stiffness [10 -3 ] |
|------|-------------------|----------------------|-----------------------------|
| 13   | 0 Gravity loading | 1,025                | 378,643                     |
| 18   | 8 Plastic         | 0,988                | 406,838                     |
| 22   | 9 Plastic         | 0,747                | 428,115                     |
| 39   | 10 Plastic        | 0,031                | 346,261                     |
| 25   | 11 Plastic        | 1,000                | 347,466                     |
| 28   | 12 Plastic        | 1,060                | 198,030                     |
| 32   | 2 Plastic         | 0,457                | 152,754                     |

# 1.1.5.2 Multipliers

| Step | Phase $\Sigma M$ Dispx | ΣM <sub>DispY</sub> | $\Sigma M$ weight | $M_{sf}$ | ΣM sf |
|------|------------------------|---------------------|-------------------|----------|-------|
| 13   | 0 0,000                | 0,000               | 1,000             | 0,000    | 1,000 |
| 18   | 8 0,000                | 0,000               | 1,000             | 0,000    | 1,000 |
| 22   | 9 0,000                | 0,000               | 1,000             | 0,000    | 1,000 |
| 39   | 10 0,000               | 0,000               | 1,000             | 0,000    | 1,000 |
| 25   | 11 0,000               | 0,000               | 1,000             | 0,000    | 1,000 |
| 28   | 12 0,000               | 0,000               | 1,000             | 0,000    | 1,000 |
| 32   | 2 0,000                | 0,000               | 1,000             | 0,000    | 1,000 |

# 1.1.5.3 Time

| Step | Phase Time step [day] | End time [day] |
|------|-----------------------|----------------|
| 13   | 0 0,000               | 0,000          |
| 18   | 8 0,000               | 0,000          |
| 22   | 9 0,000               | 0,000          |
| 39   | 10 0,000              | 0,000          |
| 25   | 11 0,000              | 0,000          |
| 28   | 12 0,000              | 0,000          |
| 32   | 2 0,000               | 0,000          |

# 1.1.5.4 Staged construction

| Step | Phase M Area | $\Sigma M$ Area | M <sub>Stage</sub> [10 -3 ] | ΣM <sub>Stage</sub> |
|------|--------------|-----------------|-----------------------------|---------------------|
| 13   | 0 1,000      | 0,901           | 335,955                     | 1,000               |
| 18   | 8 0,624      | 0,946           | 308,229                     | 1,000               |
| 22   | 9 0,639      | 0,977           | 238,869                     | 1,000               |
| 39   | 10 0,592     | 0,995           | 9,330                       | 1,000               |
| 25   | 11 0,564     | 1,000           | 282,118                     | 1,000               |
| 28   | 12 0,450     | 1,000           | 238,620                     | 1,000               |
| 32   | 2 0,333      | 1,000           | 76,139                      | 1,000               |

# 1.1.5.5 Forces

| Step | Phase F x [kN/m] | F <sub>1</sub> [kN/m] |
|------|------------------|-----------------------|
| 13   | 0 0,000          | 0,000                 |
| 18   | 8 0,000          | 0,000                 |
| 22   | 9 0,000          | 0,000                 |
| 39   | 10 0,000         | 0,000                 |
| 25   | 11 0,000         | 0,000                 |
| 28   | 12 0,000         | 0,000                 |
| 32   | 2 0,000          | 0,000                 |

#### 1.1.5.6 Consolidation

| Step | Phase Rel. P Max [kN, | m ²] |
|------|-----------------------|------|
| 13   | 0 0,000               |      |
| 18   | 8 0,000               |      |
| 22   | 9 0,000               |      |
| 39   | 10 0,000              |      |
| 25   | 11 0,000              |      |
| 28   | 12 0,000              |      |
| 32   | 2 0,000               |      |

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Total displacements ux













2.1.1.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Total displacements ux

2.1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Total displacements ux



2.1.1.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Total displacements ux







2.1.1.2.1 Calculation results, Initial phase [InitialPhase] (0/13), Total displacements uy













2.1.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Total displacements uy

2.1.1.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Total displacements uy



2.1.1.2.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Total displacements uy




2.1.1.2.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Total displacements uy

2.1.2.1 Calculation results, Initial phase [InitialPhase] (0/13), Deformed mesh |u|



2.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Deformed mesh |u|



2.1.2.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Deformed mesh |u|



2.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Deformed mesh |u|



2.1.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Deformed mesh |u|



2.1.2.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Deformed mesh |u|



2.1.2.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Deformed mesh |u|



2.2.1.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Steady state pore pressures psteady



2.2.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Steady state pore pressures psteady



2.2.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Steady state pore pressures psteady



2.2.1.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Steady state pore pressures psteady



2.2.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Steady state pore pressures psteady



2.2.1.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Steady state pore pressures psteady



2.2.1.1.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Steady state pore pressures psteady



2.2.2.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Cartesian effective stress o'xx



2.2.2.1.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Cartesian effective stress o'xx



2.2.2.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Cartesian effective stress o'xx



2.2.2.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Cartesian effective stress o'xx



2.2.2.1.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Cartesian effective stress o'xx



2.2.2.2.1 Calculation results, Initial phase [InitialPhase] (0/13), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Cartesian effective stress o'yy



2.2.2.2.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Cartesian effective stress o'yy



2.2.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Cartesian effective stress o'yy



2.2.3.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | Viquefied point         |  |

2.2.3.1.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                        |  |
|------------------------------------------------------|-------------------|------------------------|--|
|                                                      | Failure point     | □Tension cut-off point |  |
|                                                      | ▼Cap point        | Cap + hardening point  |  |
|                                                      | A Hardening point | ▼ Liquefied point      |  |

2.2.3.1.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                        |  |
|------------------------------------------------------|-------------------|------------------------|--|
|                                                      | Failure point     | □Tension cut-off point |  |
|                                                      | ▼Cap point        | Cap + hardening point  |  |
|                                                      | A Hardening point | ▼ Liquefied point      |  |

2.2.3.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |
|------------------------------------------------------|-------------------|-------------------------|--|
|                                                      | Failure point     | □ Tension cut-off point |  |
|                                                      | ▼Cap point        | Cap + hardening point   |  |
|                                                      | A Hardening point | ▼ Liquefied point       |  |

2.2.3.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |
|------------------------------------------------------|-------------------|-------------------------|--|
|                                                      | Failure point     | □ Tension cut-off point |  |
|                                                      | ▼ Cap point       | Cap + hardening point   |  |
|                                                      | A Hardening point | V Liquefied point       |  |

2.2.3.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |
|------------------------------------------------------|-------------------|-------------------------|--|
|                                                      | Failure point     | □ Tension cut-off point |  |
|                                                      | ▼ Cap point       | Cap + hardening point   |  |
|                                                      | A Hardening point | V Liquefied point       |  |

2.2.3.1.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |
|------------------------------------------------------|-------------------|-------------------------|--|
|                                                      | Failure point     | □ Tension cut-off point |  |
|                                                      | ▼Cap point        | Cap + hardening point   |  |
|                                                      | A Hardening point | ▼ Liquefied point       |  |
## 4.1.1 Calculation results, Initial phase [InitialPhase] (0/13), Deformed mesh |u|



4.1.2 Calculation results, Phase\_1 [Phase\_1] (8/18), Deformed mesh |u|



4.1.3 Calculation results, Phase\_2 [Phase\_2] (9/22), Deformed mesh |u|



4.1.4 Calculation results, Phase\_4 [Phase\_4] (11/25), Deformed mesh |u|



4.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/28), Deformed mesh |u|



4.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/32), Deformed mesh |u|



4.1.7 Calculation results, Phase\_3 [Phase\_3] (10/39), Deformed mesh |u|



ANHANG 4 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 2 APPENDICE 4 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 2

# **PLAXIS Report**

1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Materials plot





1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Materials plot





1.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Materials plot





1.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Materials plot



1.1.1.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Materials plot



1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Materials plot



1.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/36), Materials plot



## 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|-----------------------|-------|----------|----------|----------|----------|----------|
| Identification number |       | 1        | 2        | 3        | 4        | 5        |
| Drainage type         |       | Drained  | Drained  | Drained  | Drained  | Drained  |
| Colour                |       |          |          |          |          |          |
| Comments              |       |          |          |          |          |          |
| $\gamma$ unsat        | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| γ sat                 | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| Dilatancy cut-off     |       | No       | No       | No       | No       | No       |
| e init                |       | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| e min                 |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| e max                 |       | 999,0    | 999,0    | 999,0    | 999,0    | 999,0    |
| Rayleigh a            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Rayleigh β            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| E 50 ref              | kN/m² | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3  | 70,00E3  |
| E oed ref             | kN/m² | 23,55E3  | 36,94E3  | 45,27E3  | 28,84E3  | 66,76E3  |
| E ur ref              | kN/m² | 75,00E3  | 120,0E3  | 150,0E3  | 90,00E3  | 210,0E3  |
| power (m)             |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,4000   |
| Use alternatives      |       | No       | No       | No       | No       | No       |
| C c                   |       | 0,01465  | 9,339E-3 | 7,621E-3 | 0,01196  | 5,167E-3 |

| Identification         |         | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|------------------------|---------|----------|----------|----------|----------|----------|
| C s                    |         | 4,140E-3 | 2,587E-3 | 2,070E-3 | 3,450E-3 | 1,479E-3 |
| e init                 |         | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| C ref                  | kN/m²   | 5,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| φ (phi)                | 0       | 38,00    | 40,00    | 42,00    | 36,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Set to default values  |         | No       | No       | No       | No       | No       |
| V ur                   |         | 0,2000   | 0,2000   | 0,2000   | 0,2000   | 0,2000   |
| p ref                  | kN/m²   | 100,0    | 100,0    | 100,0    | 100,0    | 100,0    |
| K 0 nc                 |         | 0,3943   | 0,3695   | 0,3449   | 0,4194   | 0,4217   |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    | 608,0    |
| R r                    |         | 0,9000   | 0,9000   | 0,9000   | 0,9000   | 0,9000   |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9866   | 0,9866   | 0,9866   | 0,9866   | 0,9866   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,073E6  | 4,917E6  | 6,146E6  | 3,687E6  | 8,604E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard | Standard |

| Strength                            |          | Rigid       | Rigid       | Rigid       | Rigid       | Rigid       |
|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| R inter                             |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| Consider gap closure                |          | Yes         | Yes         | Yes         | Yes         | Yes         |
|                                     |          |             |             |             |             |             |
| Identification                      |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
| $\delta$ inter                      |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability                  |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk           | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                                   | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination                   |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| K <sub>0,x</sub> = K <sub>0,z</sub> |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K 0,z                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                                 |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| РОР                                 | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                            |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                                |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                              | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm                        | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 µm - 2 mm                        | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults                        |          | None        | None        | None        | None        | None        |

| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
|-------------------------|--------|------------|------------|------------|------------|------------|
| k y                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| -Ψ unsat                | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S s                     | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| C k                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
|                         |        |            |            |            |            |            |
| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| fтv                     |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       |         |         | -       |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 30,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 11,54E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 40,38E3 | 6731    | 40,38E3 |

| Identification         |         | Rock     | А        | F1       | GNEISS   |
|------------------------|---------|----------|----------|----------|----------|
| C ref                  | kN/m²   | 500,0    | 45,00    | 0,000    | 40,00    |
| φ (phi)                | 0       | 35,00    | 37,00    | 20,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                    | m/s     | 137,4    | 73,42    | 30,71    | 75,23    |
| V p                    | m/s     | 257,0    | 137,4    | 57,46    | 140,7    |
| Set to default values  |         | Yes      | Yes      | Yes      | Yes      |
| E inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,750E6  | 1,125E6  | 187,5E3  | 1,125E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard |

| Strength                        |          | Rigid                                                | Rigid                                            | Rigid                                                | Rigid                                            |
|---------------------------------|----------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| R inter                         |          | 1,000                                                | 1,000                                            | 1,000                                                | 1,000                                            |
| Identification                  |          | Rock                                                 | А                                                | F1                                                   | GNEISS                                           |
| Consider gap closure            |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| $\delta$ inter                  |          | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| Cross permeability              |          | Impermeable                                          | Impermeable                                      | Impermeable                                          | Impermeable                                      |
| Drainage conductivity, dk       | m³/day/m | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| R                               | m² K/kW  | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| K o determination               |          | Automatic                                            | Automatic                                        | Automatic                                            | Automatic                                        |
| $K_{0,x} = K_{0,z}$             |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| К <sub>0,х</sub>                |          | 0,4264                                               | 0,3982                                           | 0,6580                                               | 0,4122                                           |
| <b>K</b> 0,z                    |          | 0,4264                                               | 0,3982                                           | 0,6580                                               | 0,4122                                           |
| Data set                        |          |                                                      |                                                  |                                                      |                                                  |
|                                 |          | Standard                                             | USDA                                             | Standard                                             | USDA                                             |
| Model                           |          | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            |
| Model<br>Type                   |          | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  |
| Model<br>Type<br>Type           |          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          |
| Model<br>Type<br>Type<br>< 2 μm | %        | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 |

| 50 µm - 2 mm            | %      | 77,00      | 92,00      | 77,00      | 92,00      |
|-------------------------|--------|------------|------------|------------|------------|
| Use defaults            |        | None       | None       | None       | None       |
| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| k <sub>γ</sub>          | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| Identification          |        | Rock       | А          | F1         | GNEISS     |
| -ψ <sub>unsat</sub>     | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S <sub>s</sub>          | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      |
| С к                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>          | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>          | m²/day | 0,000      | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>         |        | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       |

#### 1.1.3.1 Calculation information

#### Calculation information

| Phase                     | Initial phase [InitialPhase] |       |                   |       |
|---------------------------|------------------------------|-------|-------------------|-------|
| Step                      | Initial                      |       |                   |       |
| Calulation mode           | Classical mode               |       |                   |       |
| Step type                 | Gravity loading              |       |                   |       |
| Solver type               | Picos                        |       |                   |       |
| Kernel type               | 64 bit                       |       |                   |       |
| Extrapolation factor      | 0,7032                       |       |                   |       |
| Relative stiffness        | 0,3553                       |       |                   |       |
| Design approach           |                              |       |                   |       |
| Index                     | 1                            |       |                   |       |
| Name                      | DesignApproach_1             |       |                   |       |
| Multipliers               |                              |       |                   |       |
| Soil weight               |                              |       | $\Sigma M$ weight | 1,000 |
| Strength reduction factor | M sf                         | 0,000 | ΣM sf             | 1,000 |
| Time                      | Increment                    | 0,000 | End time          | 0,000 |

#### Calculation information Staged construction Active proportion total area 0,8513 M <sub>Area</sub> 0,1991 $\Sigma M$ Area Active proportion of stage M <sub>Stage</sub> 0,2339 $\Sigma M$ <sub>Stage</sub> 1,000 Forces F x 0,000 kN/m Fγ 0,000 kN/m Consolidation 0,000 kN/m <sup>2</sup> Realised P Excess, Max

#### 1.1.3.2 Calculation information

## Step info

| Phase                     | Phase_1 [Phase_1] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,4751            |       |                   |       |
| Relative stiffness        | 0,5382            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01198 | $\Sigma M$ Area  | 0,9017 |
| Active proportion of stage   | M stage                 | 0,1819  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

#### 1.1.3.3 Calculation information

## Step info

| Phase                     | Phase_2 [Phase_2] |       |                      |       |
|---------------------------|-------------------|-------|----------------------|-------|
| Step                      | Initial           |       |                      |       |
| Calulation mode           | Classical mode    |       |                      |       |
| Step type                 | Plastic           |       |                      |       |
| Updated mesh              | False             |       |                      |       |
| Solver type               | Picos             |       |                      |       |
| Kernel type               | 64 bit            |       |                      |       |
| Extrapolation factor      | 0,6184            |       |                      |       |
| Relative stiffness        | 0,5182            |       |                      |       |
| Design approach           |                   |       |                      |       |
| Index                     | 1                 |       |                      |       |
| Name                      | DesignApproach_1  |       |                      |       |
| Multipliers               |                   |       |                      |       |
| Soil weight               |                   |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |         |                    |        |
|------------------------------|-------------------------|---------|--------------------|--------|
| Time                         | Increment               | 0,000   | End time           | 0,000  |
| Staged construction          |                         |         |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01445 | $\Sigma M_{Area}$  | 0,9485 |
| Active proportion of stage   | M stage                 | 0,2411  | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |         |                    |        |
| F x                          | 0,000 kN/m              |         |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                    |        |
| Consolidation                |                         |         |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                    |        |

#### 1.1.3.4 Calculation information

## Step info

| Phase                     | Phase_3 [Phase_3] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,9219            |       |                   |       |
| Relative stiffness        | 0,5213            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01542 | $\Sigma M$ Area  | 0,9820 |
| Active proportion of stage   | M stage                 | 0,3494  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

## 1.1.3.5 Calculation information

#### Calculation information

| Phase                     | Phase_4 [Phase_4] |       |           |       |
|---------------------------|-------------------|-------|-----------|-------|
| Step                      | Initial           |       |           |       |
| Calulation mode           | Classical mode    |       |           |       |
| Step type                 | Plastic           |       |           |       |
| Updated mesh              | False             |       |           |       |
| Solver type               | Picos             |       |           |       |
| Kernel type               | 64 bit            |       |           |       |
| Extrapolation factor      | 0,5001            |       |           |       |
| Relative stiffness        | 0,4849            |       |           |       |
| Design approach           |                   |       |           |       |
| Index                     | 1                 |       |           |       |
| Name                      | DesignApproach_1  |       |           |       |
| Multipliers               |                   |       |           |       |
| Soil weight               |                   |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |          |                    |        |
|------------------------------|-------------------------|----------|--------------------|--------|
| Time                         | Increment               | 0,000    | End time           | 0,000  |
| Staged construction          |                         |          |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 2,824E-3 | $\Sigma M$ Area    | 0,9932 |
| Active proportion of stage   | M stage                 | 0,1900   | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |          |                    |        |
| F x                          | 0,000 kN/m              |          |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |        |
| Consolidation                |                         |          |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |        |

## 1.1.3.6 Calculation information

#### Calculation information

| Phase                     | Phase_5_static [Phase_5] |       |                      |       |
|---------------------------|--------------------------|-------|----------------------|-------|
| Step                      | Initial                  |       |                      |       |
| Calulation mode           | Classical mode           |       |                      |       |
| Step type                 | Plastic                  |       |                      |       |
| Updated mesh              | False                    |       |                      |       |
| Solver type               | Picos                    |       |                      |       |
| Kernel type               | 64 bit                   |       |                      |       |
| Extrapolation factor      | 0,4958                   |       |                      |       |
| Relative stiffness        | 0,4075                   |       |                      |       |
| Design approach           |                          |       |                      |       |
| Index                     | 1                        |       |                      |       |
| Name                      | DesignApproach_1         |       |                      |       |
| Multipliers               |                          |       |                      |       |
| Soil weight               |                          |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                     | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |          |                    |       |
|------------------------------|-------------------------|----------|--------------------|-------|
| Time                         | Increment               | 0,000    | End time           | 0,000 |
| Staged construction          |                         |          |                    |       |
| Active proportion total area | M <sub>Area</sub>       | 1,674E-3 | $\Sigma M_{Area}$  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,1731   | $\Sigma M_{Stage}$ | 1,000 |
| Forces                       |                         |          |                    |       |
| F x                          | 0,000 kN/m              |          |                    |       |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |       |
| Consolidation                |                         |          |                    |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |       |

#### 1.1.3.7 Calculation information

#### Calculation information

| Phase                     | Phase_8_seismic [Phase_8] |       |                      |       |
|---------------------------|---------------------------|-------|----------------------|-------|
| Step                      | Initial                   |       |                      |       |
| Calulation mode           | Classical mode            |       |                      |       |
| Step type                 | Plastic                   |       |                      |       |
| Updated mesh              | False                     |       |                      |       |
| Solver type               | Picos                     |       |                      |       |
| Kernel type               | 64 bit                    |       |                      |       |
| Extrapolation factor      | 0,3047                    |       |                      |       |
| Relative stiffness        | 0,1589                    |       |                      |       |
| Design approach           |                           |       |                      |       |
| Index                     | 1                         |       |                      |       |
| Name                      | DesignApproach_1          |       |                      |       |
| Multipliers               |                           |       |                      |       |
| Soil weight               |                           |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                      | 0,000 | ΣM sf                | 1,000 |
| Calculation information      |                         |        |                     |       |
|------------------------------|-------------------------|--------|---------------------|-------|
| Time                         | Increment               | 0,000  | End time            | 0,000 |
| Staged construction          |                         |        |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000  | ΣM <sub>Area</sub>  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,1100 | ΣM <sub>Stage</sub> | 1,000 |
| Forces                       |                         |        |                     |       |
| F x                          | 0,000 kN/m              |        |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |        |                     |       |
| Consolidation                |                         |        |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |        |                     |       |
| Pseudo-static acceleration   |                         |        |                     |       |
| X                            | 5,000E-3 g              |        |                     |       |
| Y                            | 3,000E-3 g              |        |                     |       |

#### 1.1.4 Calculation information per phase

| Identification               | Phase | Start from Calculation type | Loading input       | Pore pressure | Time step [day] | First step | Last step |
|------------------------------|-------|-----------------------------|---------------------|---------------|-----------------|------------|-----------|
| Initial phase [InitialPhase] | 0     | N/A Gravity loading         | N/A                 | Phreatic      | 0,000           | 0          | 15        |
| Phase_1 [Phase_1]            | 8     | 0 Plastic                   | Staged construction | Phreatic      | 0,000           | 16         | 20        |
| Phase_2 [Phase_2]            | 9     | 8 Plastic                   | Staged construction | Phreatic      | 0,000           | 21         | 24        |
| Phase_3 [Phase_3]            | 10    | 9 Plastic                   | Staged construction | Phreatic      | 0,000           | 25         | 27        |
| Phase_4 [Phase_4]            | 11    | 10 Plastic                  | Staged construction | Phreatic      | 0,000           | 28         | 30        |
| Phase_5_static [Phase_5]     | 12    | 11 Plastic                  | Staged construction | Phreatic      | 0,000           | 31         | 33        |
| Phase_8_seismic [Phase_8]    | 2     | 12 Plastic                  | Staged construction | Phreatic      | 0,000           | 34         | 36        |

# 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor [10 -3 ] | Relative stiffness [10 -3 ] |
|------|-------------------|-------------------------------|-----------------------------|
| 15   | 0 Gravity loading | 703,226                       | 355,256                     |
| 20   | 8 Plastic         | 475,076                       | 538,223                     |
| 24   | 9 Plastic         | 618,415                       | 518,245                     |
| 27   | 10 Plastic        | 921,855                       | 521,280                     |
| 30   | 11 Plastic        | 500,127                       | 484,941                     |
| 33   | 12 Plastic        | 495,798                       | 407,497                     |
| 36   | 2 Plastic         | 304,726                       | 158,908                     |

# 1.1.5.2 Multipliers

| Step | Phase SM DispX | ΣM <sub>DispY</sub> | $\Sigma M$ weight | M sf  | $\Sigma M_{sf}$ |  |
|------|----------------|---------------------|-------------------|-------|-----------------|--|
| 15   | 0 0,000        | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 20   | 8 0,000        | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 24   | 9 0,000        | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 27   | 10 0,000       | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 30   | 11 0,000       | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 33   | 12 0,000       | 0,000               | 1,000             | 0,000 | 1,000           |  |
| 36   | 2 0,000        | 0,000               | 1,000             | 0,000 | 1,000           |  |

### 1.1.5.3 Time

| Step | Phase Time step [day] | End time [day] |
|------|-----------------------|----------------|
| 15   | 0 0,000               | 0,000          |
| 20   | 8 0,000               | 0,000          |
| 24   | 9 0,000               | 0,000          |
| 27   | 10 0,000              | 0,000          |
| 30   | 11 0,000              | 0,000          |
| 33   | 12 0,000              | 0,000          |
| 36   | 2 0,000               | 0,000          |

# 1.1.5.4 Staged construction

| Step | Phase M Area | $\Sigma M$ Area | M <sub>Stage</sub> [10 -3 ] | ΣM <sub>Stage</sub> |
|------|--------------|-----------------|-----------------------------|---------------------|
| 15   | 0 1,000      | 0,851           | 233,859                     | 1,000               |
| 20   | 8 0,766      | 0,902           | 181,902                     | 1,000               |
| 24   | 9 0,780      | 0,948           | 241,120                     | 1,000               |
| 27   | 10 0,758     | 0,982           | 349,392                     | 1,000               |
| 30   | 11 0,760     | 0,993           | 189,985                     | 1,000               |
| 33   | 12 0,698     | 1,000           | 173,078                     | 1,000               |
| 36   | 2 0,722      | 1,000           | 110,009                     | 1,000               |

### 1.1.5.5 Forces

| Step | Phase F x [kN/m] | F <sub>v</sub> [kN/m] |
|------|------------------|-----------------------|
| 15   | 0 0,000          | 0,000                 |
| 20   | 8 0,000          | 0,000                 |
| 24   | 9 0,000          | 0,000                 |
| 27   | 10 0,000         | 0,000                 |
| 30   | 11 0,000         | 0,000                 |
| 33   | 12 0,000         | 0,000                 |
| 36   | 2 0,000          | 0,000                 |

#### 1.1.5.6 Consolidation

| Step | Phase Rel. P Max [kN/m 2] |  |
|------|---------------------------|--|
| 15   | 0 0,000                   |  |
| 20   | 8 0,000                   |  |
| 24   | 9 0,000                   |  |
| 27   | 10 0,000                  |  |
| 30   | 11 0,000                  |  |
| 33   | 12 0,000                  |  |
| 36   | 2 0,000                   |  |

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Total displacements ux





### 2.1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Total displacements $u_x$



### 2.1.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Total displacements $u_x$









2.1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Total displacements  $u_x$ 







2.1.1.2.1 Calculation results, Initial phase [InitialPhase] (0/15), Total displacements uy





### 2.1.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Total displacements uy



2.1.1.2.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Total displacements uy



2.1.1.2.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Total displacements uy



2.1.1.2.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Total displacements uy

2.1.1.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Total displacements uy











2.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Deformed mesh |u|



2.1.2.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Deformed mesh |u|



2.1.2.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Deformed mesh |u|



2.1.2.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Deformed mesh |u|











2.2.1.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Steady state pore pressures psteady











2.2.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Steady state pore pressures psteady







2.2.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Steady state pore pressures psteady






2.2.2.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Cartesian effective stress o'xx



2.2.2.1.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/36), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.2.1 Calculation results, Initial phase [InitialPhase] (0/15), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/36), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.3.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                       |  |
|------------------------------------------------------|-----------------------|--|
| Failure point                                        | Tension cut-off point |  |
| Cap point                                            | Cap + hardening point |  |
| A Hardening point                                    | V Liquefied point     |  |

2.2.3.1.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| ▼Cap point                                           | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| ▼Cap point                                           | Cap + hardening point   |  |
| A Hardening point                                    | Viquefied point         |  |

2.2.3.1.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| ▼Cap point                                           | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| ▼Cap point                                           | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/33), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | ▼ Liquefied point       |  |

2.2.3.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/36), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | ▼ Liquefied point       |  |

4.1.1 Calculation results, Initial phase [InitialPhase] (0/15), Deformed mesh |u|



4.1.2 Calculation results, Phase\_1 [Phase\_1] (8/20), Deformed mesh |u|



4.1.3 Calculation results, Phase\_2 [Phase\_2] (9/24), Deformed mesh |u|



4.1.4 Calculation results, Phase\_3 [Phase\_3] (10/27), Deformed mesh |u|



4.1.5 Calculation results, Phase\_4 [Phase\_4] (11/30), Deformed mesh |u|











ANHANG 5 – ERGEBNISSE DER PLAXIS SLE/SLD – ABSCHNITT 3 APPENDICE 5 – RISULTATI ANALISI PLAXIS SLE/SLD – SEZIONE 3

## **PLAXIS Report**

1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Materials plot





1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Materials plot



1.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Materials plot



1.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Materials plot



1.1.1.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Materials plot



1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Materials plot



1.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Materials plot


### 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|-----------------------|-------|----------|----------|----------|----------|----------|
| Identification number |       | 1        | 2        | 3        | 4        | 5        |
| Drainage type         |       | Drained  | Drained  | Drained  | Drained  | Drained  |
| Colour                |       |          |          |          |          |          |
| Comments              |       |          |          |          |          |          |
| $\gamma$ unsat        | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| $\gamma$ sat          | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| Dilatancy cut-off     |       | No       | No       | No       | No       | No       |
| e init                |       | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| e min                 |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| e max                 |       | 999,0    | 999,0    | 999,0    | 999,0    | 999,0    |
| Rayleigh a            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Rayleigh β            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| E 50 ref              | kN/m² | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3  | 70,00E3  |
| E oed ref             | kN/m² | 23,55E3  | 36,94E3  | 45,27E3  | 28,84E3  | 66,76E3  |
| E ur ref              | kN/m² | 75,00E3  | 120,0E3  | 150,0E3  | 90,00E3  | 210,0E3  |
| power (m)             |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,4000   |
| Use alternatives      |       | No       | No       | No       | No       | No       |
| C c                   |       | 0,01465  | 9,339E-3 | 7,621E-3 | 0,01196  | 5,167E-3 |

| Identification         |         | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|------------------------|---------|----------|----------|----------|----------|----------|
| C s                    |         | 4,140E-3 | 2,587E-3 | 2,070E-3 | 3,450E-3 | 1,479E-3 |
| e init                 |         | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| C ref                  | kN/m²   | 5,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| φ (phi)                | 0       | 38,00    | 40,00    | 42,00    | 36,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Set to default values  |         | No       | No       | No       | No       | No       |
| V ur                   |         | 0,2000   | 0,2000   | 0,2000   | 0,2000   | 0,2000   |
| p ref                  | kN/m²   | 100,0    | 100,0    | 100,0    | 100,0    | 100,0    |
| K 0 nc                 |         | 0,3943   | 0,3695   | 0,3449   | 0,4194   | 0,4217   |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    | 608,0    |
| R r                    |         | 0,9000   | 0,9000   | 0,9000   | 0,9000   | 0,9000   |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9866   | 0,9866   | 0,9866   | 0,9866   | 0,9866   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,073E6  | 4,917E6  | 6,146E6  | 3,687E6  | 8,604E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard | Standard |

| Strength                            |          | Rigid       | Rigid       | Rigid       | Rigid       | Rigid       |
|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| R inter                             |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| Consider gap closure                |          | Yes         | Yes         | Yes         | Yes         | Yes         |
|                                     |          |             |             |             |             |             |
| Identification                      |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
| $\delta$ inter                      |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability                  |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk           | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                                   | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination                   |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| K <sub>0,x</sub> = K <sub>0,z</sub> |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K 0,z                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                                 |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| POP                                 | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                            |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                                |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                              | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm                        | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 µm - 2 mm                        | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults                        |          | None        | None        | None        | None        | None        |

| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
|-------------------------|--------|------------|------------|------------|------------|------------|
| kу                      | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| -Ψ unsat                | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S s                     | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| C k                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
|                         |        |            |            |            |            |            |
| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| f Tv                    |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       |         |         | -       |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 30,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 11,54E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 40,38E3 | 6731    | 40,38E3 |

| Identification         |         | Rock     | А        | F1       | GNEISS   |
|------------------------|---------|----------|----------|----------|----------|
| C ref                  | kN/m²   | 500,0    | 45,00    | 0,000    | 40,00    |
| φ (phi)                | 0       | 35,00    | 37,00    | 20,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                    | m/s     | 137,4    | 73,42    | 30,71    | 75,23    |
| V p                    | m/s     | 257,0    | 137,4    | 57,46    | 140,7    |
| Set to default values  |         | Yes      | Yes      | Yes      | Yes      |
| E inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,750E6  | 1,125E6  | 187,5E3  | 1,125E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard |

| Strength                        |          | Rigid                                                | Rigid                                            | Rigid                                                | Rigid                                            |
|---------------------------------|----------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| R inter                         |          | 1,000                                                | 1,000                                            | 1,000                                                | 1,000                                            |
| Identification                  |          | Rock                                                 | А                                                | F1                                                   | GNEISS                                           |
| Consider gap closure            |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| $\delta$ inter                  |          | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| Cross permeability              |          | Impermeable                                          | Impermeable                                      | Impermeable                                          | Impermeable                                      |
| Drainage conductivity, dk       | m³/day/m | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| R                               | m² K/kW  | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| K o determination               |          | Automatic                                            | Automatic                                        | Automatic                                            | Automatic                                        |
| $K_{0,x} = K_{0,z}$             |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| К <sub>0,х</sub>                |          | 0,4264                                               | 0,3982                                           | 0,6580                                               | 0,4122                                           |
| <b>K</b> 0,z                    |          | 0,4264                                               | 0,3982                                           | 0,6580                                               | 0,4122                                           |
| Data set                        |          |                                                      |                                                  |                                                      |                                                  |
|                                 |          | Standard                                             | USDA                                             | Standard                                             | USDA                                             |
| Model                           |          | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            |
| Model<br>Type                   |          | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  |
| Model<br>Type<br>Type           |          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          |
| Model<br>Type<br>Type<br>< 2 μm | %        | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 |

| 50 µm - 2 mm            | %      | 77,00      | 92,00      | 77,00      | 92,00      |
|-------------------------|--------|------------|------------|------------|------------|
| Use defaults            |        | None       | None       | None       | None       |
| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| k <sub>γ</sub>          | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| Identification          |        | Rock       | А          | F1         | GNEISS     |
| -ψ <sub>unsat</sub>     | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S <sub>s</sub>          | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      |
| С к                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>          | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>          | m²/day | 0,000      | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>         |        | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       |

### 1.1.3.1 Calculation information

### Calculation information

| Phase                        | Initial phase [InitialPhase] |        |                     |        |
|------------------------------|------------------------------|--------|---------------------|--------|
| Step                         | Initial                      |        |                     |        |
| Calulation mode              | Classical mode               |        |                     |        |
| Step type                    | Gravity loading              |        |                     |        |
| Solver type                  | Picos                        |        |                     |        |
| Kernel type                  | 64 bit                       |        |                     |        |
| Extrapolation factor         | 0,7119                       |        |                     |        |
| Relative stiffness           | 0,3259                       |        |                     |        |
| Multipliers                  |                              |        |                     |        |
| Soil weight                  |                              |        | $\Sigma M$ Weight   | 1,000  |
| Strength reduction factor    | M <sub>sf</sub>              | 0,000  | $\Sigma M_{sf}$     | 1,000  |
| Time                         | Increment                    | 0,000  | End time            | 0,000  |
| Staged construction          |                              |        |                     |        |
| Active proportion total area | M <sub>Area</sub>            | 0,1803 | ΣM <sub>Area</sub>  | 0,8300 |
| Active proportion of stage   | M <sub>Stage</sub>           | 0,2173 | ∑M <sub>Stage</sub> | 1,000  |

| Calculation information |                         |
|-------------------------|-------------------------|
| Forces                  |                         |
| F x                     | 0,000 kN/m              |
| Fr                      | 0,000 kN/m              |
| Consolidation           |                         |
| Realised P Excess,Max   | 0,000 kN/m <sup>2</sup> |

### 1.1.3.2 Calculation information

## Step info

| Phase                     | Phase_1 [Phase_1] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,4763            |       |                   |       |
| Relative stiffness        | 0,3274            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                    |        |
|------------------------------|-------------------------|----------|--------------------|--------|
| Time                         | Increment               | 0,000    | End time           | 0,000  |
| Staged construction          |                         |          |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 9,299E-3 | $\Sigma M$ Area    | 0,8690 |
| Active proportion of stage   | M stage                 | 0,1009   | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |          |                    |        |
| F x                          | 0,000 kN/m              |          |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |        |
| Consolidation                |                         |          |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |        |

### 1.1.3.3 Calculation information

## Step info

| Phase                     | Phase_2 [Phase_2] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,2815            |       |                   |       |
| Relative stiffness        | 0,3677            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                    |        |
|------------------------------|-------------------------|----------|--------------------|--------|
| Time                         | Increment               | 0,000    | End time           | 0,000  |
| Staged construction          |                         |          |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 7,906E-3 | ΣM <sub>Area</sub> | 0,9252 |
| Active proportion of stage   | M stage                 | 0,07566  | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |          |                    |        |
| F x                          | 0,000 kN/m              |          |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |        |
| Consolidation                |                         |          |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |        |

### 1.1.3.4 Calculation information

### Step info

| Phase                     | Phase_3 [Phase_3] |       |           |       |
|---------------------------|-------------------|-------|-----------|-------|
| Step                      | Initial           |       |           |       |
| Calulation mode           | Classical mode    |       |           |       |
| Step type                 | Plastic           |       |           |       |
| Updated mesh              | False             |       |           |       |
| Solver type               | Picos             |       |           |       |
| Kernel type               | 64 bit            |       |           |       |
| Extrapolation factor      | 0,02397           |       |           |       |
| Relative stiffness        | 0,3772            |       |           |       |
| Design approach           |                   |       |           |       |
| Index                     | 1                 |       |           |       |
| Name                      | DesignApproach_1  |       |           |       |
| Multipliers               |                   |       |           |       |
| Soil weight               |                   |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |           |                    |        |
|------------------------------|-------------------------|-----------|--------------------|--------|
| Time                         | Increment               | 0,000     | End time           | 0,000  |
| Staged construction          |                         |           |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 0,5901E-3 | $\Sigma M_{Area}$  | 0,9744 |
| Active proportion of stage   | M Stage                 | 7,553E-3  | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |           |                    |        |
| F x                          | 0,000 kN/m              |           |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |           |                    |        |
| Consolidation                |                         |           |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |           |                    |        |

### 1.1.3.5 Calculation information

### Calculation information

| Phase                     | Phase_4 [Phase_4] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,8626            |       |                   |       |
| Relative stiffness        | 0,4425            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                    |        |
|------------------------------|-------------------------|----------|--------------------|--------|
| Time                         | Increment               | 0,000    | End time           | 0,000  |
| Staged construction          |                         |          |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 8,626E-3 | $\Sigma M$ Area    | 0,9944 |
| Active proportion of stage   | M stage                 | 0,2905   | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |          |                    |        |
| F x                          | 0,000 kN/m              |          |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |        |
| Consolidation                |                         |          |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |        |

### 1.1.3.6 Calculation information

### Calculation information

| Phase                     | Phase_5_static [Phase_5] |       |                      |       |
|---------------------------|--------------------------|-------|----------------------|-------|
| Step                      | Initial                  |       |                      |       |
| Calulation mode           | Classical mode           |       |                      |       |
| Step type                 | Plastic                  |       |                      |       |
| Updated mesh              | False                    |       |                      |       |
| Solver type               | Picos                    |       |                      |       |
| Kernel type               | 64 bit                   |       |                      |       |
| Extrapolation factor      | 0,3687                   |       |                      |       |
| Relative stiffness        | 0,4771                   |       |                      |       |
| Design approach           |                          |       |                      |       |
| Index                     | 1                        |       |                      |       |
| Name                      | DesignApproach_1         |       |                      |       |
| Multipliers               |                          |       |                      |       |
| Soil weight               |                          |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                     | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |          |                     |       |
|------------------------------|-------------------------|----------|---------------------|-------|
| Time                         | Increment               | 0,000    | End time            | 0,000 |
| Staged construction          |                         |          |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 1,028E-3 | $\Sigma M_{Area}$   | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,1469   | ΣM <sub>Stage</sub> | 1,000 |
| Forces                       |                         |          |                     |       |
| F x                          | 0,000 kN/m              |          |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                     |       |
| Consolidation                |                         |          |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                     |       |

### 1.1.3.7 Calculation information

### Calculation information

| Phase                     | Phase_8_seismic [Phase_8] |       |                      |       |
|---------------------------|---------------------------|-------|----------------------|-------|
| Step                      | Initial                   |       |                      |       |
| Calulation mode           | Classical mode            |       |                      |       |
| Step type                 | Plastic                   |       |                      |       |
| Updated mesh              | False                     |       |                      |       |
| Solver type               | Picos                     |       |                      |       |
| Kernel type               | 64 bit                    |       |                      |       |
| Extrapolation factor      | 0,3428                    |       |                      |       |
| Relative stiffness        | 0,3324                    |       |                      |       |
| Design approach           |                           |       |                      |       |
| Index                     | 1                         |       |                      |       |
| Name                      | DesignApproach_1          |       |                      |       |
| Multipliers               |                           |       |                      |       |
| Soil weight               |                           |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                      | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |        |                     |       |
|------------------------------|-------------------------|--------|---------------------|-------|
| Time                         | Increment               | 0,000  | End time            | 0,000 |
| Staged construction          |                         |        |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000  | ΣM <sub>Area</sub>  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,1193 | ΣM <sub>Stage</sub> | 1,000 |
| Forces                       |                         |        |                     |       |
| F x                          | 0,000 kN/m              |        |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |        |                     |       |
| Consolidation                |                         |        |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |        |                     |       |
| Pseudo-static acceleration   |                         |        |                     |       |
| X                            | 5,000E-3 g              |        |                     |       |
| Y                            | 3,000E-3 g              |        |                     |       |

#### 1.1.4 Calculation information per phase

| Identification               | Phase | Start from Calculation type | Loading input       | Pore pressure | Time step [day] | First step | Last step |
|------------------------------|-------|-----------------------------|---------------------|---------------|-----------------|------------|-----------|
| Initial phase [InitialPhase] | 0     | N/A Gravity loading         | N/A                 | Phreatic      | 0,000           | 0          | 17        |
| Phase_1 [Phase_1]            | 8     | 0 Plastic                   | Staged construction | Phreatic      | 0,000           | 18         | 24        |
| Phase_2 [Phase_2]            | 9     | 8 Plastic                   | Staged construction | Phreatic      | 0,000           | 25         | 30        |
| Phase_3 [Phase_3]            | 10    | 9 Plastic                   | Staged construction | Phreatic      | 0,000           | 31         | 35        |
| Phase_4 [Phase_4]            | 11    | 10 Plastic                  | Staged construction | Phreatic      | 0,000           | 36         | 38        |
| Phase_5_static [Phase_5]     | 12    | 11 Plastic                  | Staged construction | Phreatic      | 0,000           | 39         | 41        |
| Phase_8_seismic [Phase_8]    | 2     | 12 Plastic                  | Staged construction | Phreatic      | 0,000           | 42         | 44        |

## 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor [10 -3 ] | Relative stiffness [10 -3 ] |
|------|-------------------|-------------------------------|-----------------------------|
| 17   | 0 Gravity loading | 711,862                       | 325,852                     |
| 24   | 8 Plastic         | 476,306                       | 327,392                     |
| 30   | 9 Plastic         | 281,514                       | 367,652                     |
| 35   | 10 Plastic        | 23,969                        | 377,211                     |
| 38   | 11 Plastic        | 862,592                       | 442,454                     |
| 41   | 12 Plastic        | 368,697                       | 477,081                     |
| 44   | 2 Plastic         | 342,810                       | 332,433                     |

## 1.1.5.2 Multipliers

| Step | Phase $\Sigma M$ DispX | ΣM <sub>DispY</sub> | $\Sigma M$ weight | M sf  | ΣM sf |
|------|------------------------|---------------------|-------------------|-------|-------|
| 17   | 0 0,000                | 0,000               | 1,000             | 0,000 | 1,000 |
| 24   | 8 0,000                | 0,000               | 1,000             | 0,000 | 1,000 |
| 30   | 9 0,000                | 0,000               | 1,000             | 0,000 | 1,000 |
| 35   | 10 0,000               | 0,000               | 1,000             | 0,000 | 1,000 |
| 38   | 11 0,000               | 0,000               | 1,000             | 0,000 | 1,000 |
| 41   | 12 0,000               | 0,000               | 1,000             | 0,000 | 1,000 |
| 44   | 2 0,000                | 0,000               | 1,000             | 0,000 | 1,000 |

| 1.1.0.0 11110 | 1. | 1.5 | .3 T | īme |
|---------------|----|-----|------|-----|
|---------------|----|-----|------|-----|

| Step | Phase Time step [day] | End time [day] |
|------|-----------------------|----------------|
| 17   | 0 0,000               | 0,000          |
| 24   | 8 0,000               | 0,000          |
| 30   | 9 0,000               | 0,000          |
| 35   | 10 0,000              | 0,000          |
| 38   | 11 0,000              | 0,000          |
| 41   | 12 0,000              | 0,000          |
| 44   | 2 0,000               | 0,000          |

### 1.1.5.4 Staged construction

| Step | Phase M Area | ΣM <sub>Area</sub> | M Stage [10 -3 ] | ΣM <sub>Stage</sub> |
|------|--------------|--------------------|------------------|---------------------|
| 17   | 0 1,000      | 0,830              | 217,254          | 1,000               |
| 24   | 8 0,424      | 0,869              | 100,873          | 1,000               |
| 30   | 9 0,537      | 0,925              | 75,656           | 1,000               |
| 35   | 10 0,630     | 0,974              | 7,553            | 1,000               |
| 38   | 11 0,673     | 0,994              | 290,470          | 1,000               |
| 41   | 12 0,797     | 1,000              | 146,907          | 1,000               |
| 44   | 2 0,696      | 1,000              | 119,296          | 1,000               |

### 1.1.5.5 Forces

| Step | Phase F x [kN/m] | F <sub>Y</sub> [kN/m] |
|------|------------------|-----------------------|
| 17   | 0 0,000          | 0,000                 |
| 24   | 8 0,000          | 0,000                 |
| 30   | 9 0,000          | 0,000                 |
| 35   | 10 0,000         | 0,000                 |
| 38   | 11 0,000         | 0,000                 |
| 41   | 12 0,000         | 0,000                 |
| 44   | 2 0,000          | 0,000                 |

### 1.1.5.6 Consolidation

| Step | Phase Rel. P Max [kN/m 2] |  |
|------|---------------------------|--|
| 17   | 0 0,000                   |  |
| 24   | 8 0,000                   |  |
| 30   | 9 0,000                   |  |
| 35   | 10 0,000                  |  |
| 38   | 11 0,000                  |  |
| 41   | 12 0,000                  |  |
| 44   | 2 0,000                   |  |

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Total displacements ux





2.1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Total displacements ux













2.1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Total displacements  $u_x$ 



### 2.1.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Total displacements ux


2.1.1.2.1 Calculation results, Initial phase [InitialPhase] (0/17), Total displacements uy



















2.1.1.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Total displacements uy







2.1.2.1 Calculation results, Initial phase [InitialPhase] (0/17), Deformed mesh |u|



2.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Deformed mesh |u|



2.1.2.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Deformed mesh |u|



2.1.2.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Deformed mesh |u|



2.1.2.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Deformed mesh |u|



[m]

2.1.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Deformed mesh |u|







2.2.1.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Steady state pore pressures psteady



2.2.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Steady state pore pressures psteady



2.2.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Steady state pore pressures psteady



2.2.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Steady state pore pressures psteady



2.2.1.1.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Steady state pore pressures psteady



2.2.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Steady state pore pressures psteady



2.2.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Steady state pore pressures psteady



2.2.2.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Cartesian effective stress o'xx



2.2.2.1.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Cartesian effective stress o'xx



2.2.2.1.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.2.1 Calculation results, Initial phase [InitialPhase] (0/17), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Cartesian effective stress o'yy



2.2.2.2.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Cartesian effective stress o'yy



2.2.2.2.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.3.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                       |  |
|------------------------------------------------------|-----------------------|--|
| Failure point                                        | Tension cut-off point |  |
| Cap point                                            | Cap + hardening point |  |
| A Hardening point                                    | V Liquefied point     |  |
2.2.3.1.2 Calculation results, Phase\_1 [Phase\_1] (8/24), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |  |
|------------------------------------------------------|-------------------|-------------------------|--|--|
|                                                      | Failure point     | □ Tension cut-off point |  |  |
|                                                      | ▼Cap point        | Cap + hardening point   |  |  |
|                                                      | A Hardening point | ▼Liquefied point        |  |  |

2.2.3.1.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |  |  |
|------------------------------------------------------|-------------------|-------------------------|--|--|--|
|                                                      | Failure point     | □ Tension cut-off point |  |  |  |
|                                                      | Cap point         | Cap + hardening point   |  |  |  |
|                                                      | A Hardening point | ▼ Liquefied point       |  |  |  |

2.2.3.1.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   |                         |  |  |
|------------------------------------------------------|-------------------|-------------------------|--|--|
|                                                      | Failure point     | □ Tension cut-off point |  |  |
|                                                      | ▼Cap point        | Cap + hardening point   |  |  |
|                                                      | A Hardening point | ▼ Liquefied point       |  |  |

2.2.3.1.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼Cap point         | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/44), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

4.1.1 Calculation results, Initial phase [InitialPhase] (0/17), Deformed mesh |u|







[m]

4.1.3 Calculation results, Phase\_2 [Phase\_2] (9/30), Deformed mesh |u|



4.1.4 Calculation results, Phase\_3 [Phase\_3] (10/35), Deformed mesh |u|



[m]

4.1.5 Calculation results, Phase\_4 [Phase\_4] (11/38), Deformed mesh |u|



[m]

4.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/41), Deformed mesh |u|







[m]

ANHANG 6 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 1 APPENDICE 6 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 1

# **PLAXIS** Report

1.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Materials plot





1.1.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Materials plot





1.1.1.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Materials plot



1.1.1.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Materials plot



1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Materials plot



1.1.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/21), Materials plot



1.1.1.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Materials plot





1.1.1.8 Calculation results, Initial phase [InitialPhase] (0/137), Materials plot





1.1.1.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Materials plot





# 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|-----------------------|-------|----------|----------|----------|----------|----------|
| Identification number |       | 1        | 2        | 3        | 4        | 5        |
| Drainage type         |       | Drained  | Drained  | Drained  | Drained  | Drained  |
| Colour                |       |          |          |          |          |          |
| Comments              |       |          |          |          |          |          |
| $\gamma$ unsat        | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| γ sat                 | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| Dilatancy cut-off     |       | No       | No       | No       | No       | No       |
| e init                |       | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| e min                 |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| e max                 |       | 999,0    | 999,0    | 999,0    | 999,0    | 999,0    |
| Rayleigh a            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Rayleigh β            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| E 50 ref              | kN/m² | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3  | 70,00E3  |
| E oed ref             | kN/m² | 23,55E3  | 36,94E3  | 45,27E3  | 28,84E3  | 66,76E3  |
| E ur ref              | kN/m² | 75,00E3  | 120,0E3  | 150,0E3  | 90,00E3  | 210,0E3  |
| power (m)             |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,4000   |
| Use alternatives      |       | No       | No       | No       | No       | No       |
| C c                   |       | 0,01465  | 9,339E-3 | 7,621E-3 | 0,01196  | 5,167E-3 |

| Identification         |         | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|------------------------|---------|----------|----------|----------|----------|----------|
| C s                    |         | 4,140E-3 | 2,587E-3 | 2,070E-3 | 3,450E-3 | 1,479E-3 |
| e init                 |         | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| C ref                  | kN/m²   | 4,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| φ (phi)                | 0       | 32,01    | 33,87    | 35,77    | 30,17    | 30,17    |
| ψ (psi)                | 0       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Set to default values  |         | No       | No       | No       | No       | No       |
| V ur                   |         | 0,2000   | 0,2000   | 0,2000   | 0,2000   | 0,2000   |
| p ref                  | kN/m²   | 100,0    | 100,0    | 100,0    | 100,0    | 100,0    |
| K 0 nc                 |         | 0,3943   | 0,3695   | 0,3449   | 0,4194   | 0,4217   |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    | 608,0    |
| R r                    |         | 0,9000   | 0,9000   | 0,9000   | 0,9000   | 0,9000   |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9866   | 0,9866   | 0,9866   | 0,9866   | 0,9866   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,073E6  | 4,917E6  | 6,146E6  | 3,687E6  | 8,604E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard | Standard |

| Strength                            |          | Rigid       | Rigid       | Rigid       | Rigid       | Rigid       |
|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| R inter                             |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| Consider gap closure                |          | Yes         | Yes         | Yes         | Yes         | Yes         |
|                                     |          |             |             |             |             |             |
| Identification                      |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
| $\delta$ inter                      |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability                  |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk           | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                                   | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination                   |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| K <sub>0,x</sub> = K <sub>0,z</sub> |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K 0,z                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                                 |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| POP                                 | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                            |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                                |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                              | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm                        | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 µm - 2 mm                        | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults                        |          | None        | None        | None        | None        | None        |

| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
|-------------------------|--------|------------|------------|------------|------------|------------|
| k y                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| -Ψ unsat                | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S s                     | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| C k                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
|                         |        |            |            |            |            |            |
| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| fтv                     |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       |         |         | -       |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 30,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 11,54E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 40,38E3 | 6731    | 40,38E3 |

| Identification         |         | Rock     | А        | F1       | GNEISS   |
|------------------------|---------|----------|----------|----------|----------|
| C ref                  | kN/m²   | 500,0    | 36,00    | 0,000    | 40,00    |
| φ (phi)                | 0       | 35,00    | 31,08    | 20,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                    | m/s     | 137,4    | 73,42    | 30,71    | 75,23    |
| V p                    | m/s     | 257,0    | 137,4    | 57,46    | 140,7    |
| Set to default values  |         | Yes      | Yes      | Yes      | Yes      |
| E inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,750E6  | 1,125E6  | 187,5E3  | 1,125E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard |

| Strength                  |          | Rigid         | Rigid         | Rigid         | Rigid         |
|---------------------------|----------|---------------|---------------|---------------|---------------|
| R inter                   |          | 1,000         | 1,000         | 1,000         | 1,000         |
| Identification            |          | Rock          | А             | F1            | GNEISS        |
| Consider gap closure      |          | Yes           | Yes           | Yes           | Yes           |
| $\delta$ inter            |          | 0,000         | 0,000         | 0,000         | 0,000         |
| Cross permeability        |          | Impermeable   | Impermeable   | Impermeable   | Impermeable   |
| Drainage conductivity, dk | m³/day/m | 0,000         | 0,000         | 0,000         | 0,000         |
| R                         | m² K/kW  | 0,000         | 0,000         | 0,000         | 0,000         |
| K o determination         |          | Automatic     | Automatic     | Automatic     | Automatic     |
| $K_{0,x} = K_{0,z}$       |          | Yes           | Yes           | Yes           | Yes           |
| К о,х                     |          | 0,4264        | 0,4837        | 0,6580        | 0,4122        |
| K 0,z                     |          | 0,4264        | 0,4837        | 0,6580        | 0,4122        |
| Data set                  |          | Standard      | USDA          | Standard      | USDA          |
| Model                     |          | Van Genuchten | Van Genuchten | Van Genuchten | Van Genuchten |
| Туре                      |          | Coarse        | Coarse        | Coarse        | Coarse        |
| Туре                      |          | Sand          | Sand          | Sand          | Sand          |
| < 2 µm                    | %        | 10,00         | 4,000         | 10,00         | 4,000         |
| 2 µm - 50 µm              | %        | 13,00         | 4,000         | 13,00         | 4,000         |

| 50 µm - 2 mm            | %      | 77,00      | 92,00      | 77,00      | 92,00      |
|-------------------------|--------|------------|------------|------------|------------|
| Use defaults            |        | None       | None       | None       | None       |
| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| k <sub>γ</sub>          | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| Identification          |        | Rock       | А          | F1         | GNEISS     |
| -ψ <sub>unsat</sub>     | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S <sub>s</sub>          | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      |
| С к                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>          | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>          | m²/day | 0,000      | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>         |        | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       |

#### 1.1.3.1 Calculation information

# Step info

| Phase                     | Phase_1 [Phase_1] |       |                      |       |
|---------------------------|-------------------|-------|----------------------|-------|
| Step                      | Initial           |       |                      |       |
| Calulation mode           | Classical mode    |       |                      |       |
| Step type                 | Plastic           |       |                      |       |
| Updated mesh              | False             |       |                      |       |
| Solver type               | Picos             |       |                      |       |
| Kernel type               | 64 bit            |       |                      |       |
| Extrapolation factor      | 0,9152            |       |                      |       |
| Relative stiffness        | 0,4110            |       |                      |       |
| Design approach           |                   |       |                      |       |
| Index                     | 1                 |       |                      |       |
| Name                      | DesignApproach_1  |       |                      |       |
| Multipliers               |                   |       |                      |       |
| Soil weight               |                   |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,02054 | $\Sigma M$ Area  | 0,9455 |
| Active proportion of stage   | M stage                 | 0,2933  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

#### 1.1.3.2 Calculation information

## Step info

| Phase                     | Phase_2 [Phase_2] |       |           |       |
|---------------------------|-------------------|-------|-----------|-------|
| Step                      | Initial           |       |           |       |
| Calulation mode           | Classical mode    |       |           |       |
| Step type                 | Plastic           |       |           |       |
| Updated mesh              | False             |       |           |       |
| Solver type               | Picos             |       |           |       |
| Kernel type               | 64 bit            |       |           |       |
| Extrapolation factor      | 0,6184            |       |           |       |
| Relative stiffness        | 0,4513            |       |           |       |
| Design approach           |                   |       |           |       |
| Index                     | 1                 |       |           |       |
| Name                      | DesignApproach_1  |       |           |       |
| Multipliers               |                   |       |           |       |
| Soil weight               |                   |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 9,614E-3 | $\Sigma M$ Area  | 0,9766 |
| Active proportion of stage   | M stage                 | 0,2116   | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

#### 1.1.3.3 Calculation information

# Step info

| Phase                     | Phase_3 [Phase_3] |       |                      |       |
|---------------------------|-------------------|-------|----------------------|-------|
| Step                      | Initial           |       |                      |       |
| Calulation mode           | Classical mode    |       |                      |       |
| Step type                 | Plastic           |       |                      |       |
| Updated mesh              | False             |       |                      |       |
| Solver type               | Picos             |       |                      |       |
| Kernel type               | 64 bit            |       |                      |       |
| Extrapolation factor      | 0,8424            |       |                      |       |
| Relative stiffness        | 0,4486            |       |                      |       |
| Design approach           |                   |       |                      |       |
| Index                     | 1                 |       |                      |       |
| Name                      | DesignApproach_1  |       |                      |       |
| Multipliers               |                   |       |                      |       |
| Soil weight               |                   |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf              | 0,000 | $\Sigma M_{sf}$      | 1,000 |
| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 7,897E-3 | $\Sigma M$ Area  | 0,9954 |
| Active proportion of stage   | M stage                 | 0,2916   | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

### 1.1.3.4 Calculation information

### Calculation information

| Phase                     | Phase_4 [Phase_4] |       |           |       |
|---------------------------|-------------------|-------|-----------|-------|
| Step                      | Initial           |       |           |       |
| Calulation mode           | Classical mode    |       |           |       |
| Step type                 | Plastic           |       |           |       |
| Updated mesh              | False             |       |           |       |
| Solver type               | Picos             |       |           |       |
| Kernel type               | 64 bit            |       |           |       |
| Extrapolation factor      | 0,8958            |       |           |       |
| Relative stiffness        | 0,3412            |       |           |       |
| Design approach           |                   |       |           |       |
| Index                     | 1                 |       |           |       |
| Name                      | DesignApproach_1  |       |           |       |
| Multipliers               |                   |       |           |       |
| Soil weight               |                   |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 1,842E-3 | $\Sigma M$ Area  | 0,9995 |
| Active proportion of stage   | M stage                 | 0,2652   | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

### 1.1.3.5 Calculation information

#### Calculation information

| Phase                     | Phase_5_static [Phase_5] |       |           |       |
|---------------------------|--------------------------|-------|-----------|-------|
| Step                      | Initial                  |       |           |       |
| Calulation mode           | Classical mode           |       |           |       |
| Step type                 | Plastic                  |       |           |       |
| Updated mesh              | False                    |       |           |       |
| Solver type               | Picos                    |       |           |       |
| Kernel type               | 64 bit                   |       |           |       |
| Extrapolation factor      | 0,1016                   |       |           |       |
| Relative stiffness        | 0,08394                  |       |           |       |
| Design approach           |                          |       |           |       |
| Index                     | 1                        |       |           |       |
| Name                      | DesignApproach_1         |       |           |       |
| Multipliers               |                          |       |           |       |
| Soil weight               |                          |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf                     | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |            |                  |       |
|------------------------------|-------------------------|------------|------------------|-------|
| Time                         | Increment               | 0,000      | End time         | 0,000 |
| Staged construction          |                         |            |                  |       |
| Active proportion total area | M <sub>Area</sub>       | 0,02772E-3 | $\Sigma M$ Area  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,01238    | $\Sigma M$ stage | 1,000 |
| Forces                       |                         |            |                  | I     |
| F x                          | 0,000 kN/m              |            |                  |       |
| F <sub>Y</sub>               | 0,000 kN/m              |            |                  |       |
| Consolidation                |                         |            |                  |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |            |                  |       |

### 1.1.3.6 Calculation information

### Calculation information

| Phase                     | Phase_8 _seismic [Phase_8] |       |                      |       |
|---------------------------|----------------------------|-------|----------------------|-------|
| Step                      | Initial                    |       |                      |       |
| Calulation mode           | Classical mode             |       |                      |       |
| Step type                 | Plastic                    |       |                      |       |
| Updated mesh              | False                      |       |                      |       |
| Solver type               | Picos                      |       |                      |       |
| Kernel type               | 64 bit                     |       |                      |       |
| Extrapolation factor      | 1,000                      |       |                      |       |
| Relative stiffness        | 0,2067                     |       |                      |       |
| Design approach           |                            |       |                      |       |
| Index                     | 1                          |       |                      |       |
| Name                      | DesignApproach_1           |       |                      |       |
| Multipliers               |                            |       |                      |       |
| Soil weight               |                            |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                       | 0,000 | ΣM sf                | 1,000 |

| Calculation information         |                               |        |                  |       |
|---------------------------------|-------------------------------|--------|------------------|-------|
| Time                            | Increment                     | 0,000  | End time         | 0,000 |
| Staged construction             |                               |        |                  |       |
| Active proportion total area    | M <sub>Area</sub>             | 0,000  | $\Sigma M$ Area  | 1,000 |
| Active proportion of stage      | M <sub>Stage</sub>            | 0,2870 | $\Sigma M$ stage | 1,000 |
| Forces                          |                               |        |                  | 1     |
| F x                             | 0,000 kN/m                    |        |                  |       |
| Fr                              | 0,000 kN/m                    |        |                  |       |
| Consolidation                   |                               |        |                  |       |
| Realised P Excess,Max           | 0,000 kN/m <sup>2</sup>       |        |                  | 1     |
| Pseudo-static acceleration      |                               |        |                  |       |
| X                               | 0,01300 g                     |        |                  |       |
| Y                               | 3,000E-3 g                    |        |                  |       |
| 1.1.3.7 Calculation information |                               |        |                  |       |
| Calculation information         |                               |        |                  |       |
| Step info                       |                               |        |                  | I     |
| Phase                           | Phase_6 FoS seismic [Phase_6] |        |                  |       |
| Step                            | Initial                       |        |                  |       |

| Calulation mode              | Classical mode     |           |                     |       |
|------------------------------|--------------------|-----------|---------------------|-------|
| Step type                    | Safety             |           |                     |       |
| Updated mesh                 | False              |           |                     |       |
| Solver type                  | Picos              |           |                     |       |
| Kernel type                  | 64 bit             |           |                     |       |
| Extrapolation factor         | 0,5000             |           |                     |       |
| Relative stiffness           | 0,07759E-6         |           |                     |       |
| Design approach              |                    |           |                     |       |
| Index                        | 1                  |           |                     |       |
| Name                         | DesignApproach_1   |           |                     |       |
| Multipliers                  |                    |           |                     |       |
| Soil weight                  |                    |           | ΣM weight           | 1,000 |
| Strength reduction factor    | M sf               | 0,1461E-3 | ΣM sf               | 1,169 |
| Calculation information      |                    |           |                     |       |
| Time                         | Increment          | 0,000     | End time            | 0,000 |
| Staged construction          |                    |           |                     |       |
| Active proportion total area | M <sub>Area</sub>  | 0,000     | ΣM <sub>Area</sub>  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub> | 0,000     | ΣM <sub>Stage</sub> | 0,000 |

## Forces

| F x                             | 0,000 kN/m                   |
|---------------------------------|------------------------------|
| Fr                              | 0,000 kN/m                   |
| Consolidation                   |                              |
| Realised P Excess,Max           | 0,000 kN/m <sup>2</sup>      |
| Pseudo-static acceleration      |                              |
| X                               | 0,01300 g                    |
| Y                               | 3,000E-3 g                   |
| 1.1.3.8 Calculation information |                              |
| Calculation information         |                              |
| Step info                       |                              |
| Phase                           | Initial phase [InitialPhase] |
| Step                            | Initial                      |
| Calulation mode                 | Classical mode               |
| Step type                       | Gravity loading              |
| Solver type                     | Picos                        |
| Kernel type                     | 64 bit                       |
| Extrapolation factor            | 1,422                        |

| Relative stiffness           | 0,3748                  |        |                    |        |
|------------------------------|-------------------------|--------|--------------------|--------|
| Design approach              |                         |        |                    |        |
| Index                        | 1                       |        |                    |        |
| Name                         | DesignApproach_1        |        |                    |        |
| Multipliers                  |                         |        |                    |        |
| Soil weight                  |                         |        | $\Sigma M$ Weight  | 1,000  |
| Strength reduction factor    | M sf                    | 0,000  | $\Sigma M_{sf}$    | 1,000  |
| Time                         | Increment               | 0,000  | End time           | 0,000  |
| Calculation information      |                         |        |                    |        |
| Staged construction          |                         |        |                    |        |
| Active proportion total area | M Area                  | 0,3558 | ΣM <sub>Area</sub> | 0,9007 |
| Active proportion of stage   | M stage                 | 0,3951 | $\Sigma M$ Stage   | 1,000  |
| Forces                       |                         |        |                    |        |
| F x                          | 0,000 kN/m              |        |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |        |                    |        |
| Consolidation                |                         |        |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |        |                    |        |

### 1.1.3.9 Calculation information

### Calculation information

| Phase                     | Phase_7 FoS static [Phase_7] |            |                      |       |
|---------------------------|------------------------------|------------|----------------------|-------|
| Step                      | Initial                      |            |                      |       |
| Calulation mode           | Classical mode               |            |                      |       |
| Step type                 | Safety                       |            |                      |       |
| Updated mesh              | False                        |            |                      |       |
| Solver type               | Picos                        |            |                      |       |
| Kernel type               | 64 bit                       |            |                      |       |
| Extrapolation factor      | 0,5000                       |            |                      |       |
| Relative stiffness        | -0,07007E-6                  |            |                      |       |
| Design approach           |                              |            |                      |       |
| Index                     | 1                            |            |                      |       |
| Name                      | DesignApproach_1             |            |                      |       |
| Multipliers               |                              |            |                      |       |
| Soil weight               |                              |            | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                         | -0,1022E-3 | ΣM sf                | 1,150 |

| Calculation information      |                         |       |                     |       |
|------------------------------|-------------------------|-------|---------------------|-------|
| Time                         | Increment               | 0,000 | End time            | 0,000 |
| Staged construction          |                         |       |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000 | $\Sigma M$ Area     | 1,000 |
| Active proportion of stage   | M stage                 | 0,000 | ΣM <sub>Stage</sub> | 0,000 |
| Forces                       |                         |       |                     |       |
| F x                          | 0,000 kN/m              |       |                     |       |
| Fr                           | 0,000 kN/m              |       |                     |       |
| Consolidation                |                         |       |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |       |                     |       |

#### 1.1.4 Calculation information per phase

| Identification                | Phase | Start from | Calculation type | Loading input           | Pore pressure                     | Time step [day] | First step | Last step Log |
|-------------------------------|-------|------------|------------------|-------------------------|-----------------------------------|-----------------|------------|---------------|
| Initial phase [InitialPhase]  | 0     | N/A        | Gravity loading  | N/A                     | Phreatic                          | 0,000           | 122        | 137           |
| Phase_1 [Phase_1]             | 8     | 0          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 0          | 4             |
| Phase_2 [Phase_2]             | 9     | 8          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 5          | 8             |
| Phase_3 [Phase_3]             | 10    | 9          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 9          | 11            |
| Phase_4 [Phase_4]             | 11    | 10         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 12         | 14            |
| Phase_5_static [Phase_5]      | 12    | 11         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 15         | 18            |
| Phase_7 FoS static [Phase_7]  | 1     | 12         | Safety           | Incremental multipliers | Use pressures from previous phase | 0,000           | 138        | 237           |
| Phase_8 _seismic [Phase_8]    | 2     | 12         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 19         | 21            |
| Phase_6 FoS seismic [Phase_6] | 13    | 2          | Safety           | Incremental multipliers | Use pressures from previous phase | 0,000           | 22         | 121           |

## 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor | Relative stiffness [10 -3 ] |
|------|-------------------|----------------------|-----------------------------|
| 137  | 0 Gravity loading | 1,422                | 374,818                     |
| 4    | 8 Plastic         | 0,915                | 411,042                     |
| 8    | 9 Plastic         | 0,618                | 451,338                     |
| 11   | 10 Plastic        | 0,842                | 448,564                     |
| 14   | 11 Plastic        | 0,896                | 341,176                     |
| 18   | 12 Plastic        | 0,102                | 83,944                      |
| 237  | 1 Safety          | 0,500                | 0,000                       |
| 21   | 2 Plastic         | 1,000                | 206,677                     |
| 121  | 13 Safety         | 0,500                | 0,000                       |

| Step | Phase $\Sigma M$ DispX | ΣM <sub>DispY</sub> | ΣM <sub>Weight</sub> | M sf [10 -6 ] | $\Sigma M_{sf}$ |
|------|------------------------|---------------------|----------------------|---------------|-----------------|
| 137  | 0 0,000                | 0,000               | 1,000                | 0,000         | 1,000           |
| 4    | 8 0,000                | 0,000               | 1,000                | 0,000         | 1,000           |
| 8    | 9 0,000                | 0,000               | 1,000                | 0,000         | 1,000           |
| 11   | 10 0,000               | 0,000               | 1,000                | 0,000         | 1,000           |
| 14   | 11 0,000               | 0,000               | 1,000                | 0,000         | 1,000           |
| 18   | 12 0,000               | 0,000               | 1,000                | 0,000         | 1,000           |
| 237  | 1 0,000                | 0,000               | 1,000                | -102,197      | 1,150           |
| 21   | 2 0,000                | 0,000               | 1,000                | 0,000         | 1,000           |
| 121  | 13 0,000               | 0,000               | 1,000                | 146,069       | 1,169           |

| 1.1.5. | 3 Time |                       |                |
|--------|--------|-----------------------|----------------|
|        | Step   | Phase Time step [day] | End time [day] |
|        | 137    | 0 0,000               | 0,000          |
|        | 4      | 8 0,000               | 0,000          |
|        | 8      | 9 0,000               | 0,000          |
|        | 11     | 10 0,000              | 0,000          |
|        | 14     | 11 0,000              | 0,000          |
|        | 18     | 12 0,000              | 0,000          |
|        | 237    | 1 0,000               | 0,000          |
|        | 21     | 2 0,000               | 0,000          |
|        | 121    | 13 0,000              | 0,000          |

#### 1.1.5.4 Staged construction

| Step | Phase M Area | ΣM <sub>Area</sub> | M stage | ΣM <sub>Stage</sub> |  |
|------|--------------|--------------------|---------|---------------------|--|
| 137  | 0 1,000      | 0,901              | 0,395   | 1,000               |  |
| 4    | 8 0,641      | 0,946              | 0,293   | 1,000               |  |
| 8    | 9 0,684      | 0,977              | 0,212   | 1,000               |  |
| 11   | 10 0,692     | 0,995              | 0,292   | 1,000               |  |
| 14   | 11 0,592     | 1,000              | 0,265   | 1,000               |  |
| 18   | 12 0,221     | 1,000              | 0,012   | 1,000               |  |
| 237  | 1 -0,021     | 1,000              | 0,000   | 0,000               |  |
| 21   | 2 0,574      | 1,000              | 0,287   | 1,000               |  |
| 121  | 13 0,029     | 1,000              | 0,000   | 0,000               |  |

| 1.1.5.5 FOICES |                             |                       |  |
|----------------|-----------------------------|-----------------------|--|
| Step           | Phase F <sub>x</sub> [kN/m] | F <sub>Y</sub> [kN/m] |  |
| 137            | 0 0,000                     | 0,000                 |  |
| 4              | 8 0,000                     | 0,000                 |  |
| 8              | 9 0,000                     | 0,000                 |  |
| 11             | 10 0,000                    | 0,000                 |  |
| 14             | 11 0,000                    | 0,000                 |  |
| 18             | 12 0,000                    | 0,000                 |  |
| 237            | 1 0,000                     | 0,000                 |  |
| 21             | 2 0,000                     | 0,000                 |  |
| 121            | 13 0,000                    | 0,000                 |  |

### 1.1.5.5 Forces

### 1.1.5.6 Consolidation

| Step | Phase Rel. P <sub>Max</sub> [ł | N/m ²] |
|------|--------------------------------|--------|
| 137  | 0 0,000                        |        |
| 4    | 8 0,000                        |        |
| 8    | 9 0,000                        |        |
| 11   | 10 0,000                       |        |
| 14   | 11 0,000                       |        |
| 18   | 12 0,000                       |        |
| 237  | 1 0,000                        |        |
| 21   | 2 0,000                        |        |
| 121  | 13 0,000                       |        |



2.1.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Total displacements ux













2.1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Total displacements  $u_x$ 



2.1.1.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/21), Total displacements ux



2.1.1.1.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Total displacements  $u_x$ 



2.1.1.1.8 Calculation results, Initial phase [InitialPhase] (0/137), Total displacements  $u_x$ 



2.1.1.1.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Total displacements  $u_x$ 

















2.1.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Total displacements uy

2.1.1.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Total displacements uy







2.1.1.2.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Total displacements uy



2.1.1.2.8 Calculation results, Initial phase [InitialPhase] (0/137), Total displacements uy


2.1.1.2.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Total displacements uy



2.1.2.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Deformed mesh |u|



2.1.2.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Deformed mesh |u|



[m]

2.1.2.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Deformed mesh |u|



[m]

2.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Deformed mesh |u|



[m]

2.1.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Deformed mesh |u|



2.1.2.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/21), Deformed mesh |u|







[\*10<sup>3</sup> m]

2.1.2.8 Calculation results, Initial phase [InitialPhase] (0/137), Deformed mesh |u|







[\*10<sup>3</sup> m]

2.2.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Steady state pore pressures psteady



2.2.1.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Steady state pore pressures psteady



2.2.1.1.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Steady state pore pressures psteady







2.2.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Steady state pore pressures psteady







## 2.2.1.1.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Steady state pore pressures psteady







2.2.1.1.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Steady state pore pressures psteady





2.2.2.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Cartesian effective stress o' xx





2.2.2.1.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Cartesian effective stress  $\sigma'_{xx}$ 







2.2.2.1.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.8 Calculation results, Initial phase [InitialPhase] (0/137), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Cartesian effective stress  $\sigma'_{xx}$ 











2.2.2.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/21), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Cartesian effective stress or'yy



2.2.2.8 Calculation results, Initial phase [InitialPhase] (0/137), Cartesian effective stress  $\sigma'_{yy}$ 


2.2.2.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.3.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |
|--------------------|------------------------------------|
| Failure point      | Tension cut-off point              |
| ▼ Cap point        | Cap + hardening point              |
| A Hardening point  | V Liquefied point                  |

2.2.3.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) | 72 |
|--------------------|------------------------------------|----|
| Failure point      | □ Tension cut-off point            |    |
| ▼ Cap point        | Cap + hardening point              |    |
| A Hardening point  | V Liquefied point                  |    |

2.2.3.1.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □Tension cut-off point             |  |
| ▼Cap point         | Cap + hardening point              |  |
| A Hardening point  | ▼ Liquefied point                  |  |

2.2.3.1.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼Cap point         | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/18), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| E Failure point    | □ Tension cut-off point            |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | ▼ Liquefied point                  |  |

2.2.3.1.6 Calculation results, Phase\_8 \_seismic [Phase\_8] (2/21), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.7 Calculation results, Phase\_6 FoS seismic [Phase\_6] (13/121), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | Tension cut-off point              |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.8 Calculation results, Initial phase [InitialPhase] (0/137), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| Cap point          | Cap + hardening point              |  |
| A Hardening point  | ▼ Liquefied point                  |  |

2.2.3.1.9 Calculation results, Phase\_7 FoS static [Phase\_7] (1/237), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | Tension cut-off point              |  |
| ▼ Cap point        | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

4.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Deformed mesh |u|



4.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Deformed mesh |u|



4.1.3 Calculation results, Phase\_3 [Phase\_3] (10/11), Deformed mesh |u|



4.1.4 Calculation results, Phase\_4 [Phase\_4] (11/14), Deformed mesh |u|























## ANHANG 7 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 1 APPENDICE 7 – RISULTATI ANALISI SLIDE SLU – SEZIONE 1

### SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## Table of Contents

| Project Summary                                                   | 3  |
|-------------------------------------------------------------------|----|
| General Settings                                                  | 4  |
| Design Standard                                                   | 5  |
| Analysis Options                                                  | 6  |
| Groundwater Analysis                                              | 7  |
| Random Numbers                                                    | 8  |
| Surface Options                                                   | 9  |
| Seismic Loading                                                   | 10 |
| Materials                                                         | 11 |
| Global Minimums                                                   | 13 |
| Method: bishop simplified                                         | 13 |
| Valid and Invalid Surfaces                                        | 14 |
| Method: bishop simplified                                         |    |
| Slice Data                                                        | 15 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.20384 | 15 |
| Interslice Data                                                   | 16 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.20384 | 16 |
| Entity Information                                                |    |
| Water Table                                                       |    |
| External Boundary                                                 | 17 |
| Material Boundary                                                 | 18 |

# Slide2 Analysis Information

# SLIDE - An Interactive Slope Stability Program

#### 1. PROJECT SUMMARY

| Slide2 Modeler Version: | 9.023                |
|-------------------------|----------------------|
| Compute Time:           | 00h:00m:00.359s      |
| Date Created:           | 16/11/2018, 18:41:47 |

#### 2. GENERAL SETTINGS

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |
|                       |               |

#### 3. DESIGN STANDARD

| Selected Type:                     | Eurocode 7 (User Defined) |  |  |  |  |
|------------------------------------|---------------------------|--|--|--|--|
| Name:                              | User Defined 1            |  |  |  |  |
| Туре                               | Partial Factor            |  |  |  |  |
| Permanent Actions: Unfavourable    | 1                         |  |  |  |  |
| Permanent Actions: Favourable      | 1                         |  |  |  |  |
| Variable Actions: Unfavourable     | 1                         |  |  |  |  |
| Variable Actions: Favourable       | 1                         |  |  |  |  |
| Effective cohesion                 | 1.25                      |  |  |  |  |
| Coefficient of shearing resistance | 1.25                      |  |  |  |  |
| Undrained strength                 | 1                         |  |  |  |  |
| Weight density                     | 1                         |  |  |  |  |
| Shear strength (other models)      | 1                         |  |  |  |  |
| Earth resistance                   | 1                         |  |  |  |  |
| Tensile and plate strength         | 1                         |  |  |  |  |
| Shear strength                     | 1                         |  |  |  |  |
| Compressive strength               | 1                         |  |  |  |  |
| Bond strength                      | 1                         |  |  |  |  |
| Seismic Coefficient                | 1                         |  |  |  |  |

#### 4. ANALYSIS OPTIONS

| Slices Type:                  | Vertical              |
|-------------------------------|-----------------------|
|                               | Analysis Methods Used |
|                               | Bishop simplified     |
| Number of slices:             | 25                    |
| Tolerance:                    | 0.005                 |
| Maximum number of iterations: | 50                    |
| Check malpha < 0.2:           | Yes                   |
| Initial trial value of FS:    | 1                     |
| Steffensen Iteration:         | Yes                   |
|                               |                       |

#### 5. GROUNDWATER ANALYSIS

| Groundwater Method:                   | Water Surfaces |
|---------------------------------------|----------------|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |
| Use negative pore pressure cutoff:    | Yes            |
| Maximum negative pore pressure [kPa]: | 0              |
| Advanced Groundwater Method:          | None           |

#### 6. RANDOM NUMBERS

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

### 7. SURFACE OPTIONS

| Surface Type:                       | Circular           |  |
|-------------------------------------|--------------------|--|
| Search Method:                      | Auto Refine Search |  |
| Divisions along slope:              | 10                 |  |
| Circles per division:               | 10                 |  |
| Number of iterations:               | 10                 |  |
| Divisions to use in next iteration: | 50%                |  |
| Composite Surfaces:                 | Disabled           |  |
| Minimum Elevation:                  | Not Defined        |  |
| Minimum Depth:                      | Not Defined        |  |
| Minimum Area:                       | Not Defined        |  |
| Minimum Weight:                     | Not Defined        |  |
|                                     |                    |  |

#### 8. SEISMIC LOADING

| Advanced seismic analysis:    | No |
|-------------------------------|----|
| Staged pseudostatic analysis: | No |

### 9. MATERIALS

| Α                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |
|---------------------|--------------|
| Unit Weight [kN/m3] | 20           |
| Cohesion [kPa]      | 0            |

### SLIDE - An Interactive Slope Stability Program

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| F1                   |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 20                       |
| Water Surface        | Water Table              |
| Hu Value             | 1                        |

SLIDE - An Interactive Slope Stability Program

**10. GLOBAL MINIMUMS** 

#### 10.1 METHOD: BISHOP SIMPLIFIED

| FS                           | 1.203840         |
|------------------------------|------------------|
| Center:                      | 625.397, 706.814 |
| Radius:                      | 84.217           |
| Left Slip Surface Endpoint:  | 543.191, 688.516 |
| Right Slip Surface Endpoint: | 658.222, 629.257 |
| Resisting Moment:            | 1.91176e+06 kN-m |
| Driving Moment:              | 1.58805e+06 kN-m |
| Total Slice Area:            | 2252.24 m2       |
| Surface Horizontal Width:    | 115.03 m         |
| Surface Average Height:      | 19.5796 m        |

# Global Minimum Support Data

No Supports Present

**11. VALID AND INVALID SURFACES** 

11.1 METHOD: BISHOP SIMPLIFIED

Number of Valid Surfaces: Number of Invalid Surfaces: 3017 0

#### 12. SLICE DATA

Global Minimum Query (bishop simplified) - Safety Factor: 1.20384

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 4.60531      | 627.073        | -72.2934                           | А                | 36                        | 31.0834                            | 38.2239                  | 46.0155                    | 16.6138                           | 0                         | 16.6138                                | 136.338                             | 136.338                                  |
| 2               | 4.60531      | 1472.15        | -63.6091                           | А                | 36                        | 31.0834                            | 94.6255                  | 113.914                    | 129.245                           | 0                         | 129.245                                | 319.942                             | 319.942                                  |
| 3               | 4.60531      | 1950.69        | -57.1901                           | А                | 36                        | 31.0834                            | 136.301                  | 164.084                    | 212.466                           | 0                         | 212.466                                | 423.883                             | 423.883                                  |
| 4               | 4.60531      | 2263.76        | -51.7656                           | А                | 36                        | 31.0834                            | 168.88                   | 203.304                    | 277.524                           | 0                         | 277.524                                | 491.867                             | 491.867                                  |
| 5               | 4.60531      | 2471.31        | -46.9385                           | А                | 36                        | 31.0834                            | 194.536                  | 234.19                     | 328.759                           | 0                         | 328.759                                | 536.925                             | 536.925                                  |
| 6               | 4.60531      | 2601.96        | -42.5176                           | А                | 36                        | 31.0834                            | 214.492                  | 258.214                    | 368.611                           | 0                         | 368.611                                | 565.278                             | 565.278                                  |
| 7               | 4.60531      | 2714.56        | -38.3926                           | А                | 36                        | 31.0834                            | 232.827                  | 280.286                    | 405.224                           | 0                         | 405.224                                | 589.711                             | 589.711                                  |
| 8               | 4.60531      | 2969.3         | -34.4923                           | А                | 36                        | 31.0834                            | 262.567                  | 316.089                    | 464.614                           | 0                         | 464.614                                | 645.02                              | 645.02                                   |
| 9               | 4.60531      | 2991.1         | -30.7678                           | А                | 36                        | 31.0834                            | 273.674                  | 329.46                     | 486.792                           | 0                         | 486.792                                | 649.726                             | 649.726                                  |
| 10              | 4.60531      | 2934.39        | -27.1829                           | А                | 36                        | 31.0834                            | 277.675                  | 334.276                    | 494.782                           | 0                         | 494.782                                | 637.383                             | 637.383                                  |
| 11              | 4.60531      | 2843.46        | -23.7103                           | А                | 36                        | 31.0834                            | 278.034                  | 334.709                    | 495.5                             | 0                         | 495.5                                  | 617.609                             | 617.609                                  |
| 12              | 4.74217      | 2804.18        | -20.2791                           | F1               | 0                         | 16.2343                            | 131.308                  | 158.074                    | 542.882                           | 0                         | 542.882                                | 591.4                               | 591.4                                    |
| 13              | 4.74217      | 2648.76        | -16.8732                           | F1               | 0                         | 16.2343                            | 125.878                  | 151.537                    | 520.429                           | 0                         | 520.429                                | 558.609                             | 558.609                                  |
| 14              | 4.74217      | 2465.92        | -13.5279                           | F1               | 0                         | 16.2343                            | 118.866                  | 143.096                    | 491.441                           | 0                         | 491.441                                | 520.04                              | 520.04                                   |
| 15              | 4.74217      | 2421.4         | -10.2291                           | F1               | 0                         | 16.2343                            | 118.345                  | 142.468                    | 489.285                           | 0                         | 489.285                                | 510.641                             | 510.641                                  |
| 16              | 4.74217      | 2343.31        | -6.96435                           | F1               | 0                         | 16.2343                            | 116.094                  | 139.759                    | 479.981                           | 0                         | 479.981                                | 494.162                             | 494.162                                  |
| 17              | 4.74217      | 2097.68        | -3.72227                           | F1               | 0                         | 16.2343                            | 105.336                  | 126.808                    | 435.502                           | 0                         | 435.502                                | 442.355                             | 442.355                                  |
| 18              | 6.18832      | 2337.69        | 0                                  | F1               | 0                         | 16.2343                            | 91.3693                  | 109.994                    | 377.759                           | 0                         | 377.759                                | 377.759                             | 377.759                                  |
| 19              | 4.24722      | 1303.69        | 3.55322                            | F1               | 0                         | 16.2343                            | 75.3737                  | 90.7379                    | 311.625                           | 0                         | 311.625                                | 306.945                             | 306.945                                  |
| 20              | 4.24722      | 1028.66        | 6.45505                            | F1               | 0                         | 16.2343                            | 60.2264                  | 72.5029                    | 248.999                           | 0                         | 248.999                                | 242.185                             | 242.185                                  |
| 21              | 4.24722      | 735.049        | 9.37365                            | F1               | 0                         | 16.2343                            | 43.5982                  | 52.4852                    | 180.252                           | 0                         | 180.252                                | 173.055                             | 173.055                                  |
| 22              | 4.24722      | 436.799        | 12.3171                            | F1               | 0                         | 16.2343                            | 26.2599                  | 31.6127                    | 108.569                           | 0                         | 108.569                                | 102.835                             | 102.835                                  |
| 23              | 4.24722      | 298.643        | 15.294                             | F1               | 0                         | 16.2343                            | 18.21                    | 21.9219                    | 75.2872                           | 0                         | 75.2872                                | 70.3075                             | 70.3075                                  |
| 24              | 4.24722      | 194.167        | 18.314                             | F1               | 0                         | 16.2343                            | 12.0182                  | 14.468                     | 49.6884                           | 0                         | 49.6884                                | 45.7105                             | 45.7105                                  |
| 25              | 4.24722      | 68.3697        | 21.3878                            | F1               | 0                         | 16.2343                            | 4.30033                  | 5.17691                    | 17.7793                           | 0                         | 17.7793                                | 16.0951                             | 16.0951                                  |

#### **13. INTERSLICE DATA**

Global Minimum Query (bishop simplified) - Safety Factor: 1.20384

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] |         | Normal Force<br>[kN] |   | Shear Force<br>[kN] |   | Force Angle [deg] |
|----|--------------|------------------|------------------------------|---------|----------------------|---|---------------------|---|-------------------|
| 1  |              | 543.191          | 688.516                      | 0       |                      | 0 |                     | 0 | -                 |
| 2  |              | 547.797          | 674.091                      | 63.8715 |                      | 0 |                     | 0 |                   |
| 3  |              | 552.402          | 664.81                       | 828.247 |                      | 0 |                     | 0 |                   |
| 4  |              | 557.007          | 657.667                      | 1719.18 |                      | 0 |                     | 0 |                   |
| 5  |              | 561.613          | 651.822                      | 2564.72 |                      | 0 |                     | 0 |                   |
| 6  |              | 566.218          | 646.894                      | 3290.25 |                      | 0 |                     | 0 |                   |
| 7  |              | 570.823          | 642.671                      | 3860.38 |                      | 0 |                     | 0 |                   |
| 8  |              | 575.428          | 639.022                      | 4268.42 |                      | 0 |                     | 0 |                   |
| 9  |              | 580.034          | 635.858                      | 4531.13 |                      | 0 |                     | 0 |                   |
| 10 |              | 584.639          | 633.116                      | 4607.31 |                      | 0 |                     | 0 |                   |
| 11 |              | 589.244          | 630.751                      | 4500.59 |                      | 0 |                     | 0 |                   |
| 12 |              | 593.85           | 628.728                      | 4224.21 |                      | 0 |                     | 0 |                   |

#### SLIDE - An Interactive Slope Stability Program

#### giovedì 3 novembre 2022

| 13 | 598.592 | 626.976 | 4553.68 | 0 | 0 |
|----|---------|---------|---------|---|---|
| 14 | 603.334 | 625.538 | 4706.18 | 0 | 0 |
| 15 | 608.076 | 624.397 | 4704.03 | 0 | 0 |
| 16 | 612.818 | 623.541 | 4562.33 | 0 | 0 |
| 17 | 617.561 | 622.962 | 4290.64 | 0 | 0 |
| 18 | 622.303 | 622.653 | 3926.2  | 0 | 0 |
| 19 | 628.491 | 622.653 | 3361.6  | 0 | 0 |
| 20 | 632.738 | 622.917 | 2959.75 | 0 | 0 |
| 21 | 636.985 | 623.398 | 2584.68 | 0 | 0 |
| 22 | 641.233 | 624.099 | 2273.4  | 0 | 0 |
| 23 | 645.48  | 625.026 | 2061.35 | 0 | 0 |
| 24 | 649.727 | 626.188 | 1896.68 | 0 | 0 |
| 25 | 653.974 | 627.593 | 1775.86 | 0 | 0 |
| 26 | 658.222 | 629.257 | 0       | 0 | 0 |

# **Discharge Sections**

#### **14. ENTITY INFORMATION**

#### 14.1 WATER TABLE

|      | Х |     | Y |
|------|---|-----|---|
| 150  |   | 618 |   |
| 1100 |   | 618 |   |

#### 14.2 EXTERNAL BOUNDARY

| X       | Y       |  |
|---------|---------|--|
| 644.036 | 629.078 |  |
| 634.789 | 635.016 |  |
| 629.34  | 638.516 |  |
| 625.671 | 640.872 |  |
| 624.34  | 641.511 |  |
| 620.205 | 644.016 |  |
| 616.815 | 645.981 |  |
| 615.328 | 646.929 |  |
| 1       |         |  |

| 613.014 | 648.516 |
|---------|---------|
| 607.86  | 648.516 |
| 597.806 | 655.016 |
| 592.456 | 658.516 |
| 584.389 | 664.016 |
| 577.788 | 668.516 |
| 573.141 | 668.516 |
| 568.162 | 671.925 |
| 564.477 | 674.516 |
| 558.79  | 678.516 |
| 551.729 | 683.516 |
| 549.003 | 685.448 |
| 544.745 | 688.516 |
| 537.403 | 688.516 |
| 531.002 | 693.076 |
| 523.502 | 698.516 |
| 516.257 | 698.516 |
| 511.994 | 702.013 |
| 511.148 | 702.722 |
| 509.56  | 704.051 |
| 505.978 | 703.817 |
| 501.869 | 699.925 |
| 500.598 | 698.516 |
| 493.557 | 698.516 |
| 485.705 | 692.661 |
| 480.145 | 688.516 |
| 473.075 | 688.516 |
| 459.527 | 678.516 |
| 445.979 | 668.516 |
| 441.584 | 668.516 |
| 427.943 | 658.516 |
| 414.301 | 648.516 |
| 409.898 | 648.516 |
| 399.736 | 641.132 |
| 396.024 | 638.516 |
| 1       |         |

| 392.123 | 635.766 |  |
|---------|---------|--|
| 381.002 | 628.021 |  |
| 379.881 | 627.24  |  |
| 377.985 | 625.927 |  |
| 370.145 | 620.734 |  |
| 163.025 | 620.734 |  |
| 163.025 | 617.753 |  |
| 163.025 | 614.879 |  |
| 163.025 | 607.753 |  |
| 163.025 | 595.753 |  |
| 163.025 | 520.734 |  |
| 1052.4  | 520.734 |  |
| 1052.4  | 595.753 |  |
| 1052.4  | 607.753 |  |
| 1052.4  | 614.879 |  |
| 1052.4  | 617.753 |  |
| 1052.4  | 632.463 |  |
| 857.838 | 633.579 |  |
| 842.181 | 631.581 |  |
| 696.243 | 629.737 |  |
|         |         |  |

14.3 MATERIAL BOUNDARY

|         | X |         | Y |
|---------|---|---------|---|
| 422.339 |   | 627.535 |   |
| 429.765 |   | 622.653 |   |
| 685.065 |   | 622.653 |   |
| 696.243 |   | 629.737 |   |

## Material Boundary

| X       | Y       |
|---------|---------|
| 163.025 | 617.753 |
| 1052.4  | 617.753 |

## Material Boundary

|         | X       | Y |
|---------|---------|---|
| 163.025 | 614.879 |   |
| 1052.4  | 614.879 |   |

Material Boundary
|         | Х |         | Y |
|---------|---|---------|---|
| 163.025 |   | 607.753 |   |
| 1052.4  |   | 607.753 |   |

#### Material Boundary

| Х       |         | Y |  |
|---------|---------|---|--|
| 163.025 | 595.753 |   |  |
| 1052.4  | 595.753 |   |  |

#### Material Boundary

| Х       |    |        | Y |
|---------|----|--------|---|
| 379.881 | 62 | 27.24  |   |
| 422.339 | 62 | 27.535 |   |
| 644.036 | 62 | 29.078 |   |

#### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 414.301 |   | 648.516 |   |
| 607.86  |   | 648.516 |   |

#### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 445.979 |   | 668.516 |   |
| 573.141 |   | 668.516 |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 480.145 |   | 688.516 |   |
| 537.403 |   | 688.516 |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 500.598 |   | 698.516 |   |
| 516.257 |   | 698.516 |   |

#### Material Boundary

|         | X | Y       |
|---------|---|---------|
| 396.024 |   | 638.516 |
| 629.34  |   | 638.516 |

#### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 427.943 |   | 658.516 |   |
| 592.456 |   | 658.516 |   |

#### SLIDE - An Interactive Slope Stability Program

Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 459.527 |   | 678.516 |   |
| 558.79  |   | 678.516 |   |

#### ANHANG 8 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 1 APPENDICE 8 – RISULTATI ANALISI SLIDE SLV – SEZIONE 1

#### SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

### Table of Contents

| Project Summary                                                   |    |
|-------------------------------------------------------------------|----|
| General Settings                                                  | 4  |
| Design Standard                                                   | 5  |
| Analysis Options                                                  | 6  |
| Groundwater Analysis                                              | 7  |
| Random Numbers                                                    | 8  |
| Surface Options                                                   | 9  |
| Seismic Loading                                                   | 10 |
| Materials                                                         | 11 |
| Global Minimums                                                   |    |
| Method: bishop simplified                                         | 13 |
| Valid and Invalid Surfaces                                        |    |
| Method: bishop simplified                                         |    |
| Slice Data                                                        | 15 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.16777 |    |
| Interslice Data                                                   | 16 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.16777 |    |
| Entity Information                                                | 17 |
| Water Table                                                       | 17 |
| External Boundary                                                 |    |
| Material Boundary                                                 |    |

## Slide2 Analysis Information

## SLIDE - An Interactive Slope Stability Program

### **Project Summary**

| Slide2 Modeler Version: | 9.023                |
|-------------------------|----------------------|
| Compute Time:           | 00h:00m:00.358s      |
| Date Created:           | 16/11/2018, 18:41:47 |

## **General Settings**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |

## Design Standard

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

# Analysis Options

| Slices Type:                  | Vertical              |  |  |  |  |
|-------------------------------|-----------------------|--|--|--|--|
|                               | Analysis Methods Used |  |  |  |  |
|                               | Bishop simplified     |  |  |  |  |
| Number of slices:             | 25                    |  |  |  |  |
| Tolerance:                    | 0.005                 |  |  |  |  |
| Maximum number of iterations: | 50                    |  |  |  |  |
| Check malpha < 0.2:           | Yes                   |  |  |  |  |
| Initial trial value of FS:    | 1                     |  |  |  |  |
| Steffensen Iteration:         | Yes                   |  |  |  |  |

## Groundwater Analysis

| Groundwater Method:                   | Water Surfaces |
|---------------------------------------|----------------|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |
| Use negative pore pressure cutoff:    | Yes            |
| Maximum negative pore pressure [kPa]: | 0              |
| Advanced Groundwater Method:          | None           |

### **Random Numbers**

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

## Surface Options

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |

## Seismic Loading

| Advanced seismic analysis:             | No     |
|----------------------------------------|--------|
| Staged pseudostatic analysis:          | No     |
| Seismic Load Coefficient (Horizontal): | 0.013  |
| Seismic Load Coefficient (Vertical):   | 0.0065 |

# Materials

| A                    |                                         |
|----------------------|-----------------------------------------|
| Color                |                                         |
| Strength Type        | Mohr-Coulomb                            |
| Unit Weight [kN/m3]  | 21                                      |
| Cohesion [kPa]       | 45                                      |
| Friction Angle [deg] | 37                                      |
| Water Surface        | Water Table                             |
| Hu Value             | Automatically Calculated                |
| Strato 1             |                                         |
| Color                |                                         |
| Strength Type        | Mohr-Coulomb                            |
| Unit Weight [kN/m3]  | 20                                      |
| Cohesion [kPa]       | 5                                       |
| Friction Angle [deg] | 38                                      |
| Water Surface        | Water Table                             |
| Hu Value             | Automatically Calculated                |
| Strato 2             | , i i i i i i i i i i i i i i i i i i i |
| Color                |                                         |
| Strength Type        | Mohr-Coulomb                            |
| Unit Weight [kN/m3]  | 20                                      |
| Cohesion [kPa]       | 0                                       |
| Friction Angle [deg] | 40                                      |
| Water Surface        | Water Table                             |
| Hu Value             | Automatically Calculated                |
| Strato 3             |                                         |
| Color                |                                         |
| Strength Type        | Mohr-Coulomb                            |
| Unit Weight [kN/m3]  | 20                                      |
| Cohesion [kPa]       | 0                                       |
| Friction Angle [deg] | 42                                      |
| Water Surface        | Water Table                             |
| Hu Value             | Automatically Calculated                |
| Strato 4             |                                         |
| Color                |                                         |
| Strength Type        | Mohr-Coulomb                            |
| Unit Weight [kN/m3]  | 20                                      |
| Cohesion [kPa]       | 0                                       |
| Friction Angle [deg] | 36                                      |
| Water Surface        | Water Table                             |
| Hu Value             | Automatically Calculated                |
| Strato 5             |                                         |
| Color                |                                         |

| Strength Type       | Mohr-Coulomb |
|---------------------|--------------|
| Unit Weight [kN/m3] | 20           |
| Cohesion [kPa]      | 0            |

#### SLIDE - An Interactive Slope Stability Program

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| F1                   |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 20                       |
| Water Surface        | Water Table              |
| Hu Value             | 1                        |

### **Global Minimums**

#### Method: bishop simplified

| FS                           | 1.167770         |
|------------------------------|------------------|
| Center:                      | 625.578, 706.822 |
| Radius:                      | 84.236           |
| Left Slip Surface Endpoint:  | 543.354, 688.516 |
| Right Slip Surface Endpoint: | 658.439, 629.260 |
| Resisting Moment:            | 1.90194e+06 kN-m |
| Driving Moment:              | 1.6287e+06 kN-m  |
| Total Slice Area:            | 2243.4 m2        |
| Surface Horizontal Width:    | 115.085 m        |
| Surface Average Height:      | 19.4935 m        |

### Global Minimum Support Data

No Supports Present

### Valid and Invalid Surfaces

#### Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces:

3246 0

### Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.16777

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 4.60382      | 618.97         | -72.2937                           | А                | 36                        | 31.0834                            | 38.4983                  | 44.9572                    | 14.8582                           | 0                         | 14.8582                                | 135.444                             | 135.444                                  |
| 2               | 4.60382      | 1460.12        | -63.6135                           | А                | 36                        | 31.0834                            | 95.9144                  | 112.006                    | 126.079                           | 0                         | 126.079                                | 319.412                             | 319.412                                  |
| 3               | 4.60382      | 1938.58        | -57.1969                           | А                | 36                        | 31.0834                            | 138.666                  | 161.93                     | 208.894                           | 0                         | 208.894                                | 424.036                             | 424.036                                  |
| 4               | 4.60382      | 2251.68        | -51.7744                           | А                | 36                        | 31.0834                            | 172.203                  | 201.094                    | 273.86                            | 0                         | 273.86                                 | 492.49                              | 492.49                                   |
| 5               | 4.60382      | 2459.29        | -46.949                            | А                | 36                        | 31.0834                            | 198.697                  | 232.032                    | 325.178                           | 0                         | 325.178                                | 537.874                             | 537.874                                  |
| 6               | 4.60382      | 2590.19        | -42.5296                           | А                | 36                        | 31.0834                            | 219.381                  | 256.186                    | 365.246                           | 0                         | 365.246                                | 566.48                              | 566.48                                   |
| 7               | 4.60382      | 2708.23        | -38.4061                           | А                | 36                        | 31.0834                            | 238.836                  | 278.905                    | 402.932                           | 0                         | 402.932                                | 592.272                             | 592.272                                  |
| 8               | 4.60382      | 2962.87        | -34.5073                           | А                | 36                        | 31.0834                            | 269.628                  | 314.863                    | 462.578                           | 0                         | 462.578                                | 647.939                             | 647.939                                  |
| 9               | 4.60382      | 2979.85        | -30.7841                           | А                | 36                        | 31.0834                            | 280.851                  | 327.969                    | 484.32                            | 0                         | 484.32                                 | 651.635                             | 651.635                                  |
| 10              | 4.60382      | 2923.35        | -27.2006                           | А                | 36                        | 31.0834                            | 285.175                  | 333.019                    | 492.696                           | 0                         | 492.696                                | 639.26                              | 639.26                                   |
| 11              | 4.60382      | 2832.78        | -23.7294                           | А                | 36                        | 31.0834                            | 285.757                  | 333.699                    | 493.825                           | 0                         | 493.825                                | 619.438                             | 619.438                                  |
| 12              | 4.69916      | 2769.98        | -20.3145                           | F1               | 0                         | 16.2343                            | 135.444                  | 158.168                    | 543.204                           | 0                         | 543.204                                | 593.345                             | 593.345                                  |
| 13              | 4.69916      | 2617.86        | -16.9392                           | F1               | 0                         | 16.2343                            | 129.951                  | 151.753                    | 521.173                           | 0                         | 521.173                                | 560.753                             | 560.753                                  |
| 14              | 4.69916      | 2439.06        | -13.6237                           | F1               | 0                         | 16.2343                            | 122.844                  | 143.454                    | 492.672                           | 0                         | 492.672                                | 522.445                             | 522.445                                  |
| 15              | 4.69916      | 2397.43        | -10.3543                           | F1               | 0                         | 16.2343                            | 122.464                  | 143.01                     | 491.146                           | 0                         | 491.146                                | 513.521                             | 513.521                                  |
| 16              | 4.69916      | 2323.44        | -7.11873                           | F1               | 0                         | 16.2343                            | 120.342                  | 140.532                    | 482.638                           | 0                         | 482.638                                | 497.667                             | 497.667                                  |
| 17              | 4.69916      | 2083.32        | -3.9059                            | F1               | 0                         | 16.2343                            | 109.402                  | 127.756                    | 438.759                           | 0                         | 438.759                                | 446.229                             | 446.229                                  |
| 18              | 6.77238      | 2542.43        | 0                                  | F1               | 0                         | 16.2343                            | 94.2146                  | 110.021                    | 377.852                           | 0                         | 377.852                                | 377.852                             | 377.852                                  |
| 19              | 4.21076      | 1266.19        | 3.73908                            | F1               | 0                         | 16.2343                            | 76.7147                  | 89.5851                    | 307.666                           | 0                         | 307.666                                | 302.652                             | 302.652                                  |
| 20              | 4.21076      | 994.775        | 6.61611                            | F1               | 0                         | 16.2343                            | 61.0533                  | 71.2962                    | 244.856                           | 0                         | 244.856                                | 237.774                             | 237.774                                  |
| 21              | 4.21076      | 705.245        | 9.51004                            | F1               | 0                         | 16.2343                            | 43.8635                  | 51.2225                    | 175.916                           | 0                         | 175.916                                | 168.568                             | 168.568                                  |
| 22              | 4.21076      | 418.77         | 12.4288                            | F1               | 0                         | 16.2343                            | 26.4088                  | 30.8394                    | 105.913                           | 0                         | 105.913                                | 100.093                             | 100.093                                  |
| 23              | 4.21076      | 294.497        | 15.3807                            | F1               | 0                         | 16.2343                            | 18.8434                  | 22.0048                    | 75.5721                           | 0                         | 75.5721                                | 70.3885                             | 70.3885                                  |
| 24              | 4.21076      | 191.308        | 18.3753                            | F1               | 0                         | 16.2343                            | 12.4307                  | 14.5162                    | 49.8536                           | 0                         | 49.8536                                | 45.7244                             | 45.7244                                  |
| 25              | 4.21076      | 67.3262        | 21.4229                            | F1               | 0                         | 16.2343                            | 4.44735                  | 5.19348                    | 17.8362                           | 0                         | 17.8362                                | 16.0913                             | 16.0913                                  |
| Т               | : امیر ما    |                | - 4 -                              |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

#### Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.16777

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] |         | Normal Force<br>[kN] |   | Shear Force<br>[kN] |   | Force Angle [deg] |
|----|--------------|------------------|------------------------------|---------|----------------------|---|---------------------|---|-------------------|
| 1  |              | 543.354          | 688.516                      | 0       |                      | 0 |                     | 0 |                   |
| 2  |              | 547.958          | 674.096                      | 45.2467 |                      | 0 |                     | 0 |                   |
| 3  |              | 552.562          | 664.816                      | 793.099 |                      | 0 |                     | 0 |                   |
| 4  |              | 557.166          | 657.673                      | 1672.67 |                      | 0 |                     | 0 |                   |
| 5  |              | 561.77           | 651.828                      | 2510.67 |                      | 0 |                     | 0 |                   |
| 6  |              | 566.374          | 646.9                        | 3231.35 |                      | 0 |                     | 0 |                   |
| 7  |              | 570.977          | 642.677                      | 3798.5  |                      | 0 |                     | 0 |                   |
| 8  |              | 575.581          | 639.027                      | 4205.87 |                      | 0 |                     | 0 |                   |
| 9  |              | 580.185          | 635.862                      | 4468.39 |                      | 0 |                     | 0 |                   |
| 10 |              | 584.789          | 633.119                      | 4543.8  |                      | 0 |                     | 0 |                   |
| 11 |              | 589.393          | 630.753                      | 4436.02 |                      | 0 |                     | 0 |                   |
| 12 |              | 593.997          | 628.729                      | 4157.99 |                      | 0 |                     | 0 |                   |
| 13 |              | 598.696          | 626.99                       | 4503.14 |                      | 0 |                     | 0 |                   |

#### SLIDE - An Interactive Slope Stability Program

#### giovedì 3 novembre 2022

| 14 | 603.395 | 625.559 | 4673.05 | 0 | 0 |
|----|---------|---------|---------|---|---|
| 15 | 608.094 | 624.42  | 4689.19 | 0 | 0 |
| 16 | 612.793 | 623.561 | 4567.16 | 0 | 0 |
| 17 | 617.492 | 622.974 | 4315.67 | 0 | 0 |
| 18 | 622.191 | 622.653 | 3969.96 | 0 | 0 |
| 19 | 628.964 | 622.653 | 3365.6  | 0 | 0 |
| 20 | 633.175 | 622.929 | 2974.7  | 0 | 0 |
| 21 | 637.385 | 623.417 | 2611.22 | 0 | 0 |
| 22 | 641.596 | 624.122 | 2311.79 | 0 | 0 |
| 23 | 645.807 | 625.05  | 2107.86 | 0 | 0 |
| 24 | 650.018 | 626.209 | 1944.89 | 0 | 0 |
| 25 | 654.228 | 627.607 | 1825.35 | 0 | 0 |
| 26 | 658.439 | 629.26  | 0       | 0 | 0 |
|    |         |         |         |   |   |

## **Discharge Sections**

## **Entity Information**

Water Table

|      | Х |     | Y |
|------|---|-----|---|
| 150  |   | 618 |   |
| 1100 |   | 618 |   |

External Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 644.036 |   | 629.078 |   |
| 634.789 | ( | 635.016 |   |
| 629.34  | ( | 638.516 |   |
| 625.671 | ( | 640.872 |   |
| 624.34  | ( | 641.511 |   |
| 620.205 | ( | 644.016 |   |
| 616.815 | ( | 645.981 |   |
| 615.328 | ( | 646.929 |   |
| 613.014 | ( | 648.516 |   |
| 607.86  | ( | 648.516 |   |

| 597.806 | 655.016 |
|---------|---------|
| 592.456 | 658.516 |
| 584.389 | 664.016 |
| 577.788 | 668.516 |
| 573.141 | 668.516 |
| 568.162 | 671.925 |
| 564.477 | 674.516 |
| 558.79  | 678.516 |
| 551.729 | 683.516 |
| 549.003 | 685.448 |
| 544.745 | 688.516 |
| 537.403 | 688.516 |
| 531.002 | 693.076 |
| 523.502 | 698.516 |
| 516.257 | 698.516 |
| 511.994 | 702.013 |
| 511.148 | 702.722 |
| 509.56  | 704.051 |
| 505.978 | 703.817 |
| 501.869 | 699.925 |
| 500.598 | 698.516 |
| 493.557 | 698.516 |
| 485.705 | 692.661 |
| 480.145 | 688.516 |
| 473.075 | 688.516 |
| 459.527 | 678.516 |
| 445.979 | 668.516 |
| 441.584 | 668.516 |
| 427.943 | 658.516 |
| 414.301 | 648.516 |
| 409.898 | 648.516 |
| 399.736 | 641.132 |
| 396.024 | 638.516 |
| 392.123 | 635.766 |
| 381.002 | 628.021 |
|         |         |

| 379.881 | 627.24  |
|---------|---------|
| 377.985 | 625.927 |
| 370.145 | 620.734 |
| 163.025 | 620.734 |
| 163.025 | 617.753 |
| 163.025 | 614.879 |
| 163.025 | 607.753 |
| 163.025 | 595.753 |
| 163.025 | 520.734 |
| 1052.4  | 520.734 |
| 1052.4  | 595.753 |
| 1052.4  | 607.753 |
| 1052.4  | 614.879 |
| 1052.4  | 617.753 |
| 1052.4  | 632.463 |
| 857.838 | 633.579 |
| 842.181 | 631.581 |
| 696.243 | 629.737 |

#### Material Boundary

|         | Х       | Y |
|---------|---------|---|
| 422.339 | 627.535 |   |
| 429.765 | 622.653 |   |
| 685.065 | 622.653 |   |
| 696.243 | 629.737 |   |

#### Material Boundary

|         | X | Y       |  |
|---------|---|---------|--|
| 163.025 |   | 617.753 |  |
| 1052.4  |   | 617.753 |  |

#### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 163.025 |   | 614.879 |   |
| 1052.4  |   | 614.879 |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 163.025 |   | 607.753 |   |

#### SL

| 1052 4            | CO3 353 |   |  |
|-------------------|---------|---|--|
| 1052.4            | 607.753 |   |  |
| aterial Boundary  |         | V |  |
| A                 |         | Ĭ |  |
| 163.025           | 595./53 |   |  |
| 1052.4            | 595./53 |   |  |
| aterial Boundary  |         | V |  |
| A                 | (27.24  | I |  |
| 379.881           | 627.24  |   |  |
| 422.339           | 627.535 |   |  |
| 644.036           | 629.078 |   |  |
| aterial Boundary  |         |   |  |
| X                 |         | Y |  |
| 414.301           | 648.516 |   |  |
| 607.86            | 648.516 |   |  |
| aterial Boundary  |         |   |  |
| X                 |         | Y |  |
| 445.979           | 668.516 |   |  |
| 573.141           | 668.516 |   |  |
| aterial Boundary  |         |   |  |
| Х                 |         | Y |  |
| 480.145           | 688.516 |   |  |
| 537.403           | 688.516 |   |  |
| aterial Boundary  |         |   |  |
| Х                 |         | Y |  |
| 500.598           | 698.516 |   |  |
| 516.257           | 698.516 |   |  |
| aterial Boundary  |         |   |  |
| X                 |         | Y |  |
| 396.024           | 638.516 |   |  |
| 629.34            | 638.516 |   |  |
| aterial Boundary  |         |   |  |
| X                 |         | Y |  |
| 427.943           | 658.516 |   |  |
| 592.456           | 658.516 |   |  |
| Laterial Boundary |         |   |  |
| X                 |         | Y |  |

| 459.527 | 678.516 |
|---------|---------|
| 558.79  | 678.516 |

ANHANG 9 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 2 APPENDICE 9 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 2

# **PLAXIS** Report

1.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Materials plot





1.1.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Materials plot





1.1.1.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Materials plot



1.1.1.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Materials plot



1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Materials plot



1.1.1.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Materials plot





1.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Materials plot



1.1.1.8 Calculation results, Initial phase [InitialPhase] (0/171), Materials plot





1.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Materials plot





#### 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|-----------------------|-------|----------|----------|----------|----------|----------|
| Identification number |       | 1        | 2        | 3        | 4        | 5        |
| Drainage type         |       | Drained  | Drained  | Drained  | Drained  | Drained  |
| Colour                |       |          |          |          |          |          |
| Comments              |       |          |          |          |          |          |
| $\gamma$ unsat        | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| $\gamma$ sat          | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| Dilatancy cut-off     |       | No       | No       | No       | No       | No       |
| e init                |       | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| e min                 |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| e max                 |       | 999,0    | 999,0    | 999,0    | 999,0    | 999,0    |
| Rayleigh a            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Rayleigh β            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| E 50 ref              | kN/m² | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3  | 70,00E3  |
| E oed ref             | kN/m² | 23,55E3  | 36,94E3  | 45,27E3  | 28,84E3  | 66,76E3  |
| E ur ref              | kN/m² | 75,00E3  | 120,0E3  | 150,0E3  | 90,00E3  | 210,0E3  |
| power (m)             |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,4000   |
| Use alternatives      |       | No       | No       | No       | No       | No       |
| С с                   |       | 0,01465  | 9,339E-3 | 7,621E-3 | 0,01196  | 5,167E-3 |

| Identification         |         | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|------------------------|---------|----------|----------|----------|----------|----------|
| C s                    |         | 4,140E-3 | 2,587E-3 | 2,070E-3 | 3,450E-3 | 1,479E-3 |
| e init                 |         | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| C ref                  | kN/m²   | 4,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| φ (phi)                | 0       | 32,01    | 33,87    | 35,77    | 30,17    | 30,17    |
| ψ (psi)                | 0       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Set to default values  |         | No       | No       | No       | No       | No       |
| V ur                   |         | 0,2000   | 0,2000   | 0,2000   | 0,2000   | 0,2000   |
| p ref                  | kN/m²   | 100,0    | 100,0    | 100,0    | 100,0    | 100,0    |
| K 0 nc                 |         | 0,3943   | 0,3695   | 0,3449   | 0,4194   | 0,4217   |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    | 608,0    |
| R r                    |         | 0,9000   | 0,9000   | 0,9000   | 0,9000   | 0,9000   |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9866   | 0,9866   | 0,9866   | 0,9866   | 0,9866   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,073E6  | 4,917E6  | 6,146E6  | 3,687E6  | 8,604E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard | Standard |

| Strength                            |          | Rigid       | Rigid       | Rigid       | Rigid       | Rigid       |
|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| R inter                             |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| Consider gap closure                |          | Yes         | Yes         | Yes         | Yes         | Yes         |
|                                     |          |             |             |             |             |             |
| Identification                      |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
| $\delta$ inter                      |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability                  |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk           | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                                   | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination                   |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| K <sub>0,x</sub> = K <sub>0,z</sub> |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K 0,z                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                                 |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| POP                                 | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                            |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                                |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                              | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm                        | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 µm - 2 mm                        | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults                        |          | None        | None        | None        | None        | None        |

| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
|-------------------------|--------|------------|------------|------------|------------|------------|
| k y                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| -Ψ unsat                | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S s                     | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| C k                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
|                         |        |            |            |            |            |            |
| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| fтv                     |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

#### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       |         |         | -       |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 30,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 11,54E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 40,38E3 | 6731    | 40,38E3 |
| Identification         |         | Rock     | А        | F1       | GNEISS   |
|------------------------|---------|----------|----------|----------|----------|
| C ref                  | kN/m²   | 500,0    | 36,00    | 0,000    | 40,00    |
| φ (phi)                | 0       | 35,00    | 31,08    | 20,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                    | m/s     | 137,4    | 73,42    | 30,71    | 75,23    |
| V <sub>p</sub>         | m/s     | 257,0    | 137,4    | 57,46    | 140,7    |
| Set to default values  |         | Yes      | Yes      | Yes      | Yes      |
| E inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,750E6  | 1,125E6  | 187,5E3  | 1,125E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard |

| Strength                                    |          | Rigid                                                | Rigid                                            | Rigid                                                | Rigid                                            |
|---------------------------------------------|----------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| R inter                                     |          | 1,000                                                | 1,000                                            | 1,000                                                | 1,000                                            |
| Identification                              |          | Rock                                                 | А                                                | F1                                                   | GNEISS                                           |
| Consider gap closure                        |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| $\delta$ inter                              |          | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| Cross permeability                          |          | Impermeable                                          | Impermeable                                      | Impermeable                                          | Impermeable                                      |
| Drainage conductivity, dk                   | m³/day/m | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| R                                           | m² K/kW  | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| K o determination                           |          | Automatic                                            | Automatic                                        | Automatic                                            | Automatic                                        |
| $K_{0,x} = K_{0,z}$                         |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| К о,х                                       |          | 0,4264                                               | 0,4837                                           | 0,6580                                               | 0,4122                                           |
| K 0,z                                       |          | 0,4264                                               | 0,4837                                           | 0 6580                                               | 0 4122                                           |
|                                             |          |                                                      | ,                                                | 0,0500                                               | 0,1122                                           |
| Data set                                    |          | Standard                                             | USDA                                             | Standard                                             | USDA                                             |
| Model                                       |          | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            |
| Model<br>Type                               |          | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  |
| Data set<br>Model<br>Type<br>Type           |          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          |
| Data set<br>Model<br>Type<br>Type<br>< 2 μm | %        | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 |

| 50 µm - 2 mm            | %      | 77,00      | 92,00      | 77,00      | 92,00      |
|-------------------------|--------|------------|------------|------------|------------|
| Use defaults            |        | None       | None       | None       | None       |
| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| k <sub>γ</sub>          | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| Identification          |        | Rock       | А          | F1         | GNEISS     |
| -ψ <sub>unsat</sub>     | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S <sub>s</sub>          | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      |
| С к                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>          | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>          | m²/day | 0,000      | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>         |        | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       |

## 1.1.3.1 Calculation information

# Step info

| Phase                     | Phase_1 [Phase_1] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,5010            |       |                   |       |
| Relative stiffness        | 0,5309            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01263 | $\Sigma M$ Area  | 0,9017 |
| Active proportion of stage   | M stage                 | 0,1919  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

## 1.1.3.2 Calculation information

## Step info

| Phase                     | Phase_2 [Phase_2] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,6881            |       |                   |       |
| Relative stiffness        | 0,5066            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                    |        |
|------------------------------|-------------------------|---------|--------------------|--------|
| Time                         | Increment               | 0,000   | End time           | 0,000  |
| Staged construction          |                         |         |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01608 | $\Sigma M_{Area}$  | 0,9485 |
| Active proportion of stage   | M stage                 | 0,2611  | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |         |                    |        |
| F x                          | 0,000 kN/m              |         |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                    |        |
| Consolidation                |                         |         |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                    |        |

## 1.1.3.3 Calculation information

# Step info

| Phase                     | Phase_3 [Phase_3] |       |           |       |
|---------------------------|-------------------|-------|-----------|-------|
| Step                      | Initial           |       |           |       |
| Calulation mode           | Classical mode    |       |           |       |
| Step type                 | Plastic           |       |           |       |
| Updated mesh              | False             |       |           |       |
| Solver type               | Picos             |       |           |       |
| Kernel type               | 64 bit            |       |           |       |
| Extrapolation factor      | 0,1242            |       |           |       |
| Relative stiffness        | 0,4413            |       |           |       |
| Design approach           |                   |       |           |       |
| Index                     | 1                 |       |           |       |
| Name                      | DesignApproach_1  |       |           |       |
| Multipliers               |                   |       |           |       |
| Soil weight               |                   |       | ΣM Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf     | 1,000 |

| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 2,078E-3 | $\Sigma M$ Area  | 0,9820 |
| Active proportion of stage   | M stage                 | 0,04311  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

## 1.1.3.4 Calculation information

## Calculation information

| Phase                     | Phase_4 [Phase_4] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,7857            |       |                   |       |
| Relative stiffness        | 0,4236            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                    |        |
|------------------------------|-------------------------|----------|--------------------|--------|
| Time                         | Increment               | 0,000    | End time           | 0,000  |
| Staged construction          |                         |          |                    |        |
| Active proportion total area | M <sub>Area</sub>       | 4,437E-3 | $\Sigma M$ Area    | 0,9932 |
| Active proportion of stage   | M stage                 | 0,2614   | $\Sigma M_{Stage}$ | 1,000  |
| Forces                       |                         |          |                    |        |
| F x                          | 0,000 kN/m              |          |                    |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                    |        |
| Consolidation                |                         |          |                    |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                    |        |

# 1.1.3.5 Calculation information

## Calculation information

| Phase                     | Phase_5_static [Phase_5] |       |                      |       |
|---------------------------|--------------------------|-------|----------------------|-------|
| Step                      | Initial                  |       |                      |       |
| Calulation mode           | Classical mode           |       |                      |       |
| Step type                 | Plastic                  |       |                      |       |
| Updated mesh              | False                    |       |                      |       |
| Solver type               | Picos                    |       |                      |       |
| Kernel type               | 64 bit                   |       |                      |       |
| Extrapolation factor      | 0,3140                   |       |                      |       |
| Relative stiffness        | 0,1432                   |       |                      |       |
| Design approach           |                          |       |                      |       |
| Index                     | 1                        |       |                      |       |
| Name                      | DesignApproach_1         |       |                      |       |
| Multipliers               |                          |       |                      |       |
| Soil weight               |                          |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                     | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |          |                     |       |
|------------------------------|-------------------------|----------|---------------------|-------|
| Time                         | Increment               | 0,000    | End time            | 0,000 |
| Staged construction          |                         |          |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 1,060E-3 | $\Sigma M_{Area}$   | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,07465  | ΣM <sub>Stage</sub> | 1,000 |
| Forces                       |                         |          |                     |       |
| F x                          | 0,000 kN/m              |          |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                     |       |
| Consolidation                |                         |          |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                     |       |

# 1.1.3.6 Calculation information

## Calculation information

| Phase                     | Phase_6 FoS static [Phase_6] |             |                      |       |
|---------------------------|------------------------------|-------------|----------------------|-------|
| Step                      | Initial                      |             |                      |       |
| Calulation mode           | Classical mode               |             |                      |       |
| Step type                 | Safety                       |             |                      |       |
| Updated mesh              | False                        |             |                      |       |
| Solver type               | Picos                        |             |                      |       |
| Kernel type               | 64 bit                       |             |                      |       |
| Extrapolation factor      | 1,000                        |             |                      |       |
| Relative stiffness        | 0,02271E-3                   |             |                      |       |
| Design approach           |                              |             |                      |       |
| Index                     | 1                            |             |                      |       |
| Name                      | DesignApproach_1             |             |                      |       |
| Multipliers               |                              |             |                      |       |
| Soil weight               |                              |             | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                         | -0,05615E-3 | ΣM sf                | 1,103 |

| Calculation information      |                         |       |                     |       |
|------------------------------|-------------------------|-------|---------------------|-------|
| Time                         | Increment               | 0,000 | End time            | 0,000 |
| Staged construction          |                         |       |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000 | $\Sigma M$ Area     | 1,000 |
| Active proportion of stage   | M Stage                 | 0,000 | ΣM <sub>Stage</sub> | 0,000 |
| Forces                       |                         |       |                     | I     |
| F x                          | 0,000 kN/m              |       |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |       |                     |       |
| Consolidation                |                         |       |                     |       |
| Realised P Excess, Max       | 0,000 kN/m <sup>2</sup> |       |                     |       |

## 1.1.3.7 Calculation information

## Calculation information

| Phase                     | Phase_8_seismic [Phase_8] |       |                      |       |
|---------------------------|---------------------------|-------|----------------------|-------|
| Step                      | Initial                   |       |                      |       |
| Calulation mode           | Classical mode            |       |                      |       |
| Step type                 | Plastic                   |       |                      |       |
| Updated mesh              | False                     |       |                      |       |
| Solver type               | Picos                     |       |                      |       |
| Kernel type               | 64 bit                    |       |                      |       |
| Extrapolation factor      | 0,1869                    |       |                      |       |
| Relative stiffness        | 0,3870                    |       |                      |       |
| Design approach           |                           |       |                      |       |
| Index                     | 1                         |       |                      |       |
| Name                      | DesignApproach_1          |       |                      |       |
| Multipliers               |                           |       |                      |       |
| Soil weight               |                           |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                      | 0,000 | ΣM sf                | 1,000 |

| Calculation information         |                              |         |                     |       |
|---------------------------------|------------------------------|---------|---------------------|-------|
| Time                            | Increment                    | 0,000   | End time            | 0,000 |
| Staged construction             |                              |         |                     |       |
| Active proportion total area    | M <sub>Area</sub>            | 0,000   | $\Sigma M$ Area     | 1,000 |
| Active proportion of stage      | M Stage                      | 0,07485 | ΣM <sub>Stage</sub> | 1,000 |
| Forces                          |                              |         |                     | I     |
| F x                             | 0,000 kN/m                   |         |                     |       |
| Fr                              | 0,000 kN/m                   |         |                     |       |
| Consolidation                   |                              |         |                     |       |
| Realised P Excess,Max           | 0,000 kN/m <sup>2</sup>      |         |                     | 1     |
| Pseudo-static acceleration      |                              |         |                     |       |
| X                               | 0,01300 g                    |         |                     |       |
| Y                               | 6,000E-3 g                   |         |                     |       |
| 1.1.3.8 Calculation information |                              |         |                     |       |
| Calculation information         |                              |         |                     |       |
| Step info                       |                              |         |                     | I     |
| Phase                           | Initial phase [InitialPhase] |         |                     |       |
| Step                            | Initial                      |         |                     |       |

| Calulation mode              | Classical mode     |        |                     |        |
|------------------------------|--------------------|--------|---------------------|--------|
| Step type                    | Gravity loading    |        |                     |        |
| Solver type                  | Picos              |        |                     |        |
| Kernel type                  | 64 bit             |        |                     | 1      |
| Extrapolation factor         | 0,9229             |        |                     |        |
| Relative stiffness           | 0,3494             |        |                     |        |
| Design approach              |                    |        |                     |        |
| Index                        | 1                  |        |                     | 1      |
| Name                         | DesignApproach_1   |        |                     |        |
| Multipliers                  |                    |        |                     |        |
| Soil weight                  |                    |        | $\Sigma M$ weight   | 1,000  |
| Strength reduction factor    | M sf               | 0,000  | $\Sigma M_{sf}$     | 1,000  |
| Time                         | Increment          | 0,000  | End time            | 0,000  |
| Calculation information      |                    |        |                     |        |
| Staged construction          |                    |        |                     |        |
| Active proportion total area | M <sub>Area</sub>  | 0,2185 | $\Sigma M_{Area}$   | 0,8513 |
| Active proportion of stage   | M <sub>Stage</sub> | 0,2566 | ΣM <sub>Stage</sub> | 1,000  |
| Forces                       |                    |        |                     |        |

| F x                   | 0,000 kN/m              |
|-----------------------|-------------------------|
| Fγ                    | 0,000 kN/m              |
| Consolidation         |                         |
| Realised P Excess,Max | 0,000 kN/m <sup>2</sup> |

# 1.1.3.9 Calculation information

## Calculation information

| Phase                     | Phase_7 FoS seismic [Phase_7] |           |                   |       |
|---------------------------|-------------------------------|-----------|-------------------|-------|
| Step                      | Initial                       |           |                   |       |
| Calulation mode           | Classical mode                |           |                   |       |
| Step type                 | Safety                        |           |                   |       |
| Updated mesh              | False                         |           |                   |       |
| Solver type               | Picos                         |           |                   |       |
| Kernel type               | 64 bit                        |           |                   |       |
| Extrapolation factor      | 2,000                         |           |                   |       |
| Relative stiffness        | 1,120E-6                      |           |                   |       |
| Design approach           |                               |           |                   |       |
| Index                     | 1                             |           |                   |       |
| Name                      | DesignApproach_1              |           |                   |       |
| Multipliers               |                               |           |                   |       |
| Soil weight               |                               |           | $\Sigma M$ weight | 1,000 |
| Strength reduction factor | M sf                          | -1,275E-3 | ΣM sf             | 1,142 |

| Calculation information      |                         |       |                     |       |
|------------------------------|-------------------------|-------|---------------------|-------|
| Time                         | Increment               | 0,000 | End time            | 0,000 |
| Staged construction          |                         |       |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000 | $\Sigma M$ Area     | 1,000 |
| Active proportion of stage   | M stage                 | 0,000 | ΣM <sub>Stage</sub> | 0,000 |
| Forces                       |                         |       |                     |       |
| F x                          | 0,000 kN/m              |       |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |       |                     |       |
| Consolidation                |                         |       |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |       |                     |       |
| Pseudo-static acceleration   |                         |       |                     |       |
| X                            | 0,01300 g               |       |                     |       |
| Y                            | 6,000E-3 g              |       |                     |       |

#### 1.1.4 Calculation information per phase

| Identification                | Phase | Start from | Calculation type | Loading input           | Pore pressure                     | Time step [day] | First step | Last step Log |
|-------------------------------|-------|------------|------------------|-------------------------|-----------------------------------|-----------------|------------|---------------|
| Initial phase [InitialPhase]  | 0     | N/A        | Gravity loading  | N/A                     | Phreatic                          | 0,000           | 153        | 171           |
| Phase_1 [Phase_1]             | 8     | 0          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 0          | 4             |
| Phase_2 [Phase_2]             | 9     | 8          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 5          | 8             |
| Phase_3 [Phase_3]             | 10    | 9          | Plastic          | Staged construction     | Phreatic                          | 0,000           | 9          | 12            |
| Phase_4 [Phase_4]             | 11    | 10         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 13         | 15            |
| Phase_5_static [Phase_5]      | 12    | 11         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 16         | 19            |
| Phase_6 FoS static [Phase_6]  | 13    | 12         | Safety           | Incremental multipliers | Use pressures from previous phase | 0,000           | 20         | 119           |
| Phase_8_seismic [Phase_8]     | 2     | 12         | Plastic          | Staged construction     | Phreatic                          | 0,000           | 120        | 122           |
| Phase_7 FoS seismic [Phase_7] | 1     | 2          | Safety           | Incremental multipliers | Use pressures from previous phase | 0,000           | 172        | 271           |

# 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor | Relative stiffness [10 -3 ] |
|------|-------------------|----------------------|-----------------------------|
| 171  | 0 Gravity loading | 0,923                | 349,374                     |
| 4    | 8 Plastic         | 0,501                | 530,929                     |
| 8    | 9 Plastic         | 0,688                | 506,559                     |
| 12   | 10 Plastic        | 0,124                | 441,304                     |
| 15   | 11 Plastic        | 0,786                | 423,637                     |
| 19   | 12 Plastic        | 0,314                | 143,187                     |
| 119  | 13 Safety         | 1,000                | 0,023                       |
| 122  | 2 Plastic         | 0,187                | 386,980                     |
| 271  | 1 Safety          | 2,000                | 0,001                       |

| 1.1.5.2 Multip | oliers |
|----------------|--------|
|----------------|--------|

| Step | Phase ΣM <sub>DispX</sub> | ΣM <sub>Dispy</sub> | $\Sigma M$ weight | M sf   | $\Sigma M_{sf}$ |
|------|---------------------------|---------------------|-------------------|--------|-----------------|
| 171  | 0 0,000                   | 0,000               | 1,000             | 0,000  | 1,000           |
| 4    | 8 0,000                   | 0,000               | 1,000             | 0,000  | 1,000           |
| 8    | 9 0,000                   | 0,000               | 1,000             | 0,000  | 1,000           |
| 12   | 10 0,000                  | 0,000               | 1,000             | 0,000  | 1,000           |
| 15   | 11 0,000                  | 0,000               | 1,000             | 0,000  | 1,000           |
| 19   | 12 0,000                  | 0,000               | 1,000             | 0,000  | 1,000           |
| 119  | 13 0,000                  | 0,000               | 1,000             | 0,000  | 1,103           |
| 122  | 2 0,000                   | 0,000               | 1,000             | 0,000  | 1,000           |
| 271  | 1 0,000                   | 0,000               | 1,000             | -0,001 | 1,142           |

| 1.1.5.3 Time |      |                       |                |
|--------------|------|-----------------------|----------------|
|              | Step | Phase Time step [day] | End time [day] |
|              | 171  | 0 0,000               | 0,000          |
|              | 4    | 8 0,000               | 0,000          |
|              | 8    | 9 0,000               | 0,000          |
|              | 12   | 10 0,000              | 0,000          |
|              | 15   | 11 0,000              | 0,000          |
|              | 19   | 12 0,000              | 0,000          |
|              | 119  | 13 0,000              | 0,000          |
|              | 122  | 2 0,000               | 0,000          |
|              | 271  | 1 0,000               | 0,000          |

## 1.1.5.4 Staged construction

| Step | Phase M Area | ΣM <sub>Area</sub> | M <sub>Stage</sub> | $\Sigma M$ stage |  |
|------|--------------|--------------------|--------------------|------------------|--|
| 171  | 0 1,000      | 0,851              | 0,257              | 1,000            |  |
| 4    | 8 0,766      | 0,902              | 0,192              | 1,000            |  |
| 8    | 9 0,759      | 0,948              | 0,261              | 1,000            |  |
| 12   | 10 0,694     | 0,982              | 0,043              | 1,000            |  |
| 15   | 11 0,665     | 0,993              | 0,261              | 1,000            |  |
| 19   | 12 0,475     | 1,000              | 0,075              | 1,000            |  |
| 119  | 13 -0,011    | 1,000              | 0,000              | 0,000            |  |
| 122  | 2 0,801      | 1,000              | 0,075              | 1,000            |  |
| 271  | 1 -0,256     | 1,000              | 0,000              | 0,000            |  |

| 1.1.5.5 FUICES |                  |                       |  |
|----------------|------------------|-----------------------|--|
| Step           | Phase F x [kN/m] | F <sub>Y</sub> [kN/m] |  |
| 171            | 0 0,000          | 0,000                 |  |
| 4              | 8 0,000          | 0,000                 |  |
| 8              | 9 0,000          | 0,000                 |  |
| 12             | 10 0,000         | 0,000                 |  |
| 15             | 11 0,000         | 0,000                 |  |
| 19             | 12 0,000         | 0,000                 |  |
| 119            | 13 0,000         | 0,000                 |  |
| 122            | 2 0,000          | 0,000                 |  |
| 271            | 1 0,000          | 0,000                 |  |

## 1.1.5.5 Forces

## 1.1.5.6 Consolidation

| Step | Phase Rel. P <sub>Max</sub> [kN/m | 2] |
|------|-----------------------------------|----|
| 171  | 0 0,000                           |    |
| 4    | 8 0,000                           |    |
| 8    | 9 0,000                           |    |
| 12   | 10 0,000                          |    |
| 15   | 11 0,000                          |    |
| 19   | 12 0,000                          |    |
| 119  | 13 0,000                          |    |
| 122  | 2 0,000                           |    |
| 271  | 1 0,000                           |    |



2.1.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Total displacements ux













2.1.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Total displacements  $u_x$ 



2.1.1.1.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Total displacements  $u_x$ 



2.1.1.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Total displacements ux



2.1.1.1.8 Calculation results, Initial phase [InitialPhase] (0/171), Total displacements  $u_x$ 


2.1.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Total displacements  $u_x$ 





2.1.1.2.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Total displacements uy



2.1.1.2.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Total displacements uy







2.1.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Total displacements uy

2.1.1.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Total displacements uy



2.1.1.2.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Total displacements uy



2.1.1.2.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Total displacements uy



2.1.1.2.8 Calculation results, Initial phase [InitialPhase] (0/171), Total displacements uy



2.1.1.2.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Total displacements uy



2.1.2.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Deformed mesh |u|



2.1.2.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Deformed mesh |u|



2.1.2.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Deformed mesh |u|



2.1.2.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Deformed mesh |u|























2.2.1.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Steady state pore pressures psteady



2.2.1.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Steady state pore pressures psteady



2.2.1.1.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Steady state pore pressures psteady







2.2.1.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Steady state pore pressures psteady















## 2.2.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Steady state pore pressures psteady











2.2.2.1.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Cartesian effective stress o'xx



2.2.2.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.8 Calculation results, Initial phase [InitialPhase] (0/171), Cartesian effective stress  $\sigma'_{xx}$ 


2.2.2.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Cartesian effective stress  $\sigma'_{xx}$ 











2.2.2.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Cartesian effective stress o'yy



2.2.2.2.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.8 Calculation results, Initial phase [InitialPhase] (0/171), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.3.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   | 1                     |  |
|------------------------------------------------------|-------------------|-----------------------|--|
|                                                      | Failure point     | Tension cut-off point |  |
|                                                      | ▼ Cap point       | Cap + hardening point |  |
|                                                      | A Hardening point | V Liquefied point     |  |

2.2.3.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                   | 1.                    |  |
|------------------------------------------------------|-------------------|-----------------------|--|
|                                                      | Failure point     | Tension cut-off point |  |
|                                                      | ▼ Cap point       | Cap + hardening point |  |
|                                                      | A Hardening point | V Liquefied point     |  |

2.2.3.1.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Plastic point history Failure



| Plastic point hist | ry Failure (scaled up 1,00 times) |  |
|--------------------|-----------------------------------|--|
| Failure point      | □ Tension cut-off point           |  |
| ▼Cap point         | Cap + hardening point             |  |
| A Hardening point  | V Liquefied point                 |  |

2.2.3.1.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼Cap point         | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.5 Calculation results, Phase\_5\_static [Phase\_5] (12/19), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                       |  |
|------------------------------------------------------|-----------------------|--|
| Failure point                                        | Tension cut-off point |  |
| ▼ Cap point                                          | Cap + hardening point |  |
| A Hardening point                                    | V Liquefied point     |  |

2.2.3.1.6 Calculation results, Phase\_6 FoS static [Phase\_6] (13/119), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.7 Calculation results, Phase\_8\_seismic [Phase\_8] (2/122), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | ▼ Liquefied point       |  |

2.2.3.1.8 Calculation results, Initial phase [InitialPhase] (0/171), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/271), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

4.1.1 Calculation results, Phase\_1 [Phase\_1] (8/4), Deformed mesh |u|



4.1.2 Calculation results, Phase\_2 [Phase\_2] (9/8), Deformed mesh |u|



4.1.3 Calculation results, Phase\_3 [Phase\_3] (10/12), Deformed mesh |u|



4.1.4 Calculation results, Phase\_4 [Phase\_4] (11/15), Deformed mesh |u|























#### ANHANG 10 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 2 APPENDICE 10 – RISULTATI ANALISI SLIDE SLU – SEZIONE 2

#### SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

#### Table of Contents

| Project Summary                                                   | 3  |
|-------------------------------------------------------------------|----|
| General Settings                                                  | 4  |
| Design Standard                                                   | 5  |
| Analysis Options                                                  | 6  |
| Groundwater Analysis                                              | 7  |
| Random Numbers                                                    | 8  |
| Surface Options                                                   | 9  |
| Seismic Loading                                                   |    |
| Materials                                                         | 11 |
| Global Minimums                                                   |    |
| Method: bishop simplified                                         | 13 |
| Valid and Invalid Surfaces                                        |    |
| Method: bishop simplified                                         |    |
| Slice Data                                                        |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.14041 | 15 |
| Interslice Data                                                   | 16 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.14041 |    |
| Entity Information                                                | 17 |
| Water Table                                                       | 17 |
| External Boundary                                                 | 17 |
| Material Boundary                                                 | 19 |

## Slide2 Analysis Information

# SLIDE - An Interactive Slope Stability Program

### **Project Summary**

| Slide2 Modeler Version: | 9.023                |
|-------------------------|----------------------|
| Compute Time:           | 00h:00m:00.391s      |
| Date Created:           | 16/11/2018, 18:41:47 |

### **General Settings**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |

## Design Standard

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

# Analysis Options

| Slices Type:                  | Vertical              |
|-------------------------------|-----------------------|
|                               | Analysis Methods Used |
|                               | Bishop simplified     |
| Number of slices:             | 25                    |
| Tolerance:                    | 0.005                 |
| Maximum number of iterations: | 50                    |
| Check malpha < 0.2:           | Yes                   |
| Initial trial value of FS:    | 1                     |
| Steffensen Iteration:         | Yes                   |

## Groundwater Analysis

| Groundwater Method:                   | Water Surfaces |
|---------------------------------------|----------------|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |
| Use negative pore pressure cutoff:    | Yes            |
| Maximum negative pore pressure [kPa]: | 0              |
| Advanced Groundwater Method:          | None           |
|                                       |                |

#### **Random Numbers**

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

# Surface Options

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |

## Seismic Loading

| Advanced seismic analysis:    | No |
|-------------------------------|----|
| Staged pseudostatic analysis: | No |
# Materials

| A                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Roccia               |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 400                      |
| Friction Angle [deg] | 29.26                    |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |  |
|---------------------|--------------|--|
| Unit Weight [kN/m3] | 20           |  |
| Cohesion [kPa]      | 0            |  |

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| F1                   |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 20                       |
| Water Surface        | Water Table              |
| Hu Value             | 1                        |

## **Global Minimums**

### Method: bishop simplified

| FS                           | 1.140410         |
|------------------------------|------------------|
| Center:                      | 546.658, 731.206 |
| Radius:                      | 121.380          |
| Left Slip Surface Endpoint:  | 428.349, 704.076 |
| Right Slip Surface Endpoint: | 600.328, 622.336 |
| Resisting Moment:            | 5.8199e+06 kN-m  |
| Driving Moment:              | 5.10335e+06 kN-m |
| Total Slice Area:            | 5247.66 m2       |
| Surface Horizontal Width:    | 171.979 m        |
| Surface Average Height:      | 30.5134 m        |
|                              |                  |

## Global Minimum Support Data

No Supports Present

## Valid and Invalid Surfaces

#### Method: bishop simplified

| Number of Valid Surfaces:   | 3159 |
|-----------------------------|------|
| Number of Invalid Surfaces: | 0    |

## Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.14041

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 6.80192      | 1444.09        | -71.9077                           | А                | 36                        | 31.0834                            | 54.9485                  | 62.6638                    | 44.23                             | 0                         | 44.23                                  | 212.422                             | 212.422                                  |
| 2               | 6.80192      | 3320.35        | -63.1718                           | А                | 36                        | 31.0834                            | 141.654                  | 161.544                    | 208.254                           | 0                         | 208.254                                | 488.339                             | 488.339                                  |
| 3               | 6.80192      | 4344.86        | -56.688                            | А                | 36                        | 31.0834                            | 204.694                  | 233.435                    | 327.507                           | 0                         | 327.507                                | 638.982                             | 638.982                                  |
| 4               | 6.80192      | 5505.96        | -51.2007                           | А                | 36                        | 31.0834                            | 277.284                  | 316.218                    | 464.826                           | 0                         | 464.826                                | 809.708                             | 809.708                                  |
| 5               | 6.80192      | 6043.77        | -46.3129                           | А                | 36                        | 31.0834                            | 322.765                  | 368.084                    | 550.863                           | 0                         | 550.863                                | 888.77                              | 888.77                                   |
| 6               | 6.80192      | 6311.79        | -41.833                            | А                | 36                        | 31.0834                            | 354.476                  | 404.248                    | 610.852                           | 0                         | 610.852                                | 928.158                             | 928.158                                  |
| 7               | 6.80192      | 6939.17        | -37.6499                           | А                | 36                        | 31.0834                            | 405.566                  | 462.512                    | 707.502                           | 0                         | 707.502                                | 1020.39                             | 1020.39                                  |
| 8               | 6.80192      | 7058.7         | -33.692                            | А                | 36                        | 31.0834                            | 429.037                  | 489.278                    | 751.9                             | 0                         | 751.9                                  | 1037.95                             | 1037.95                                  |
| 9               | 6.80192      | 6936.11        | -29.9098                           | А                | 36                        | 31.0834                            | 437.629                  | 499.076                    | 768.154                           | 0                         | 768.154                                | 1019.9                              | 1019.9                                   |
| 10              | 6.80192      | 6729.78        | -26.2669                           | А                | 36                        | 31.0834                            | 439.898                  | 501.664                    | 772.446                           | 0                         | 772.446                                | 989.542                             | 989.542                                  |
| 11              | 7.52774      | 7206.02        | -22.5522                           | F1               | 0                         | 16.2343                            | 220.997                  | 252.027                    | 865.549                           | 0                         | 865.549                                | 957.325                             | 957.325                                  |
| 12              | 7.52774      | 7136.99        | -18.7515                           | F1               | 0                         | 16.2343                            | 218.927                  | 249.667                    | 873.819                           | 16.3768                   | 857.443                                | 948.142                             | 931.765                                  |
| 13              | 7.52774      | 6595.31        | -15.0349                           | F1               | 0                         | 16.2343                            | 200.074                  | 228.166                    | 822.429                           | 38.8295                   | 783.6                                  | 876.17                              | 837.34                                   |
| 14              | 7.52774      | 5974.44        | -11.3823                           | F1               | 0                         | 16.2343                            | 179.097                  | 204.244                    | 757.627                           | 56.1805                   | 701.446                                | 793.682                             | 737.501                                  |
| 15              | 7.52774      | 5336.48        | -7.77621                           | F1               | 0                         | 16.2343                            | 157.969                  | 180.149                    | 687.352                           | 68.656                    | 618.696                                | 708.924                             | 640.268                                  |
| 16              | 7.52774      | 5002.24        | -4.20099                           | F1               | 0                         | 16.2343                            | 147.394                  | 168.09                     | 653.688                           | 76.4104                   | 577.277                                | 664.514                             | 588.104                                  |
| 17              | 10.2472      | 5406.07        | 0                                  | F1               | 0                         | 16.2343                            | 114.499                  | 130.576                    | 527.567                           | 79.1226                   | 448.444                                | 527.567                             | 448.444                                  |
| 18              | 6.45235      | 2471.85        | 3.9459                             | F1               | 0                         | 16.2343                            | 79.5695                  | 90.7418                    | 388.578                           | 76.9395                   | 311.639                                | 383.09                              | 306.15                                   |
| 19              | 6.45235      | 2153.07        | 7.00708                            | F1               | 0                         | 16.2343                            | 69.2779                  | 79.0052                    | 342.197                           | 70.8665                   | 271.331                                | 333.682                             | 262.816                                  |
| 20              | 6.45235      | 1996.72        | 10.0886                            | F1               | 0                         | 16.2343                            | 66.3618                  | 75.6797                    | 321.256                           | 61.3455                   | 259.911                                | 309.449                             | 248.103                                  |
| 21              | 6.45235      | 1844.82        | 13.1999                            | F1               | 0                         | 16.2343                            | 64.5332                  | 73.5943                    | 301.04                            | 48.2914                   | 252.749                                | 285.904                             | 237.613                                  |
| 22              | 6.45235      | 1769.49        | 16.3516                            | F1               | 0                         | 16.2343                            | 66.9701                  | 76.3734                    | 293.876                           | 31.5826                   | 262.293                                | 274.227                             | 242.644                                  |
| 23              | 6.45235      | 1385.31        | 19.5552                            | F1               | 0                         | 16.2343                            | 57.1774                  | 65.2057                    | 234.995                           | 11.0552                   | 223.94                                 | 214.685                             | 203.63                                   |
| 24              | 6.45235      | 505.251        | 22.8239                            | F1               | 0                         | 16.2343                            | 22.3984                  | 25.5434                    | 87.725                            | 0                         | 87.725                                 | 78.2986                             | 78.2986                                  |
| 25              | 3.37981      | 48.0315        | 25.3592                            | А                | 36                        | 31.0834                            | 52.1327                  | 59.4526                    | 38.9033                           | 0                         | 38.9033                                | 14.1944                             | 14.1944                                  |
| т               | L I !        |                | - 1 -                              |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

### Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.14041

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] |         | Normal Force<br>[kN] |   | Shear Force<br>[kN] |   | Force Angle [deg] |
|----|--------------|------------------|------------------------------|---------|----------------------|---|---------------------|---|-------------------|
| 1  |              | 428.349          | 704.076                      | 0       |                      | 0 |                     | 0 |                   |
| 2  |              | 435.151          | 683.256                      | 547.369 |                      | 0 |                     | 0 |                   |
| 3  |              | 441.953          | 669.807                      | 2385.32 |                      | 0 |                     | 0 |                   |
| 4  |              | 448.755          | 659.456                      | 4383.73 |                      | 0 |                     | 0 |                   |
| 5  |              | 455.557          | 650.996                      | 6431.43 |                      | 0 |                     | 0 |                   |
| 6  |              | 462.359          | 643.875                      | 8160.22 |                      | 0 |                     | 0 |                   |
| 7  |              | 469.161          | 637.787                      | 9470.03 |                      | 0 |                     | 0 |                   |
| 8  |              | 475.963          | 632.539                      | 10426   |                      | 0 |                     | 0 |                   |
| 9  |              | 482.765          | 628.004                      | 10919.5 |                      | 0 |                     | 0 |                   |
| 10 |              | 489.566          | 624.091                      | 10950.5 |                      | 0 |                     | 0 |                   |
| 11 |              | 496.368          | 620.734                      | 10553.4 |                      | 0 |                     | 0 |                   |
| 12 |              | 503.896          | 617.608                      | 11596.7 |                      | 0 |                     | 0 |                   |
| 13 |              | 511.424          | 615.053                      | 12182.9 |                      | 0 |                     | 0 |                   |

#### giovedì 3 novembre 2022

| 14 | 518.952 | 613.031 | 12340.7 | 0 | 0 |
|----|---------|---------|---------|---|---|
| 15 | 526.479 | 611.515 | 12141.6 | 0 | 0 |
| 16 | 534.007 | 610.487 | 11659.8 | 0 | 0 |
| 17 | 541.535 | 609.934 | 10912.5 | 0 | 0 |
| 18 | 551.782 | 609.934 | 9740.01 | 0 | 0 |
| 19 | 558.234 | 610.379 | 9054.01 | 0 | 0 |
| 20 | 564.687 | 611.172 | 8335.92 | 0 | 0 |
| 21 | 571.139 | 612.321 | 7539.22 | 0 | 0 |
| 22 | 577.591 | 613.834 | 6667.53 | 0 | 0 |
| 23 | 584.044 | 615.727 | 5679.37 | 0 | 0 |
| 24 | 590.496 | 618.019 | 4772.12 | 0 | 0 |
| 25 | 596.948 | 620.734 | 4389.48 | 0 | 0 |
| 26 | 600.328 | 622.336 | 0       | 0 | 0 |
|    |         |         |         |   |   |

# **Discharge Sections**

# **Entity Information**

Water Table

|     | Х |     | Y |
|-----|---|-----|---|
| 150 |   | 618 |   |
| 900 |   | 618 |   |

External Boundary

| 461.174688.076453.219694.076446.156694.076432.817704.076415.55704.076410.273704.076406.154704.076401.047704.076206.103704.076  |         | Х |         | Y |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------|---|---------|---|--|
| 453.219694.076446.156694.076432.817704.076415.55704.076410.273704.076406.154704.076401.047704.076206.102704.076                | 461.174 |   | 688.076 |   |  |
| 446.156694.076432.817704.076415.55704.076410.273704.076406.154704.076401.047704.076206.102704.076                              | 453.219 |   | 694.076 |   |  |
| 432.817   704.076     415.55   704.076     410.273   704.076     406.154   704.076     401.047   704.076     206.102   704.076 | 446.156 |   | 694.076 |   |  |
| 415.55   704.076     410.273   704.076     406.154   704.076     401.047   704.076     206.103   704.076                       | 432.817 |   | 704.076 |   |  |
| 410.273   704.076     406.154   704.076     401.047   704.076     206.103   704.076                                            | 415.55  |   | 704.076 |   |  |
| 406.154 704.076   401.047 704.076   206.103 704.076                                                                            | 410.273 |   | 704.076 |   |  |
| 401.047 704.076                                                                                                                | 406.154 |   | 704.076 |   |  |
| 206 102 704 076                                                                                                                | 401.047 |   | 704.076 |   |  |
| /04.076                                                                                                                        | 396.103 |   | 704.076 |   |  |
| 391.434 704.076                                                                                                                | 391.434 |   | 704.076 |   |  |

| 387.418 | 704.076 |
|---------|---------|
| 385.446 | 703.223 |
| 381.277 | 701.461 |
| 368.133 | 695.765 |
| 364.234 | 694.076 |
| 359.124 | 691.862 |
| 353.54  | 689.436 |
| 349.648 | 687.548 |
| 343.792 | 684.076 |
| 341.013 | 682.428 |
| 328.899 | 674.076 |
| 323.401 | 670.284 |
| 314.977 | 664.076 |
| 310.689 | 664.076 |
| 306.758 | 661.178 |
| 301.708 | 657.506 |
| 298.442 | 655.163 |
| 296.971 | 654.076 |
| 295.313 | 652.851 |
| 290.499 | 649.508 |
| 265.639 | 663.027 |
| 261.527 | 663.141 |
| 243.261 | 677.78  |
| 221.846 | 681.968 |
| 199.673 | 685.173 |
| •       |         |

#### 163.025

692

| 163.025            | 617.683 |
|--------------------|---------|
| 163.025            | 614.683 |
| 163.025            | 607.683 |
| 163.025            | 595.683 |
| 163.025            | 520.734 |
| 883.257            | 520.734 |
| 883.257            | 595.683 |
| 883.257            | 607.683 |
| 883.257            | 611.215 |
| 871.403            | 610.663 |
| 868.175            | 614.297 |
| 857.341            | 614.683 |
| 852.521            | 617.683 |
| 851.96             | 618.032 |
| 848.524            | 618.028 |
| 844.639            | 620.734 |
| 689.364            | 620.734 |
| 639.238            | 620.734 |
| 605.437            | 620.734 |
| 602.256            | 622,695 |
| 601.53             | 622.676 |
| 600.218            | 622.305 |
| 599.431            | 622.249 |
| 597.879            | 622.162 |
| 597.114            | 622.151 |
| 596.621            | 622.148 |
| 595.445            | 622.229 |
| 593.94             | 623.059 |
| 593,199            | 623.082 |
| 592.8              | 623 126 |
| 589 985            | 625,759 |
| 589 298            | 626 016 |
| 588 106            | 627 101 |
| 586 169            | 627.101 |
| 583 013            | 629 224 |
| 581 231            | 627.886 |
| 572 752            | 626.834 |
| 571 587            | 626.818 |
| 568 284            | 626.892 |
| 562 751            | 627.073 |
| 56 728             | 627.075 |
| 552 780            | 630 576 |
|                    | 624 1   |
| 540.455            | 627 602 |
| 544.059            | 630.692 |
| 541.814<br>F2F F12 | 039.570 |
| 535.51Z            | 644.076 |
| 501.292<br>500 570 |         |
| 522.575<br>F17.979 | 050.570 |
| 51/.ð/ð            | 654.076 |
| 510.5              | 059.5/6 |
| 504.499            | 664.076 |
| 500.267            | 664.076 |

| 492.232 | 670.076 |
|---------|---------|
| 486.876 | 674.076 |
| 480.18  | 679.076 |
| 473.503 | 684.076 |
| 466.487 | 684.076 |
|         |         |

#### Material Boundary

| Х       |         | Y |
|---------|---------|---|
| 163.025 | 617.683 |   |
| 405.547 | 617.683 |   |
| 396.735 | 620.734 |   |
| 380.175 | 627.103 |   |
| 349.828 | 633.816 |   |
| 310.926 | 642.422 |   |
| 306.159 | 643.753 |   |
| 301.413 | 643.574 |   |
| 290.499 | 649.508 |   |
|         |         |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 639.238 |   | 620.734 |   |
| 634.622 |   | 617.683 |   |
| 852.521 |   | 617.683 |   |

### Material Boundary

| Х       | Y       |
|---------|---------|
| 163.025 | 614.683 |
| 416.848 | 614.683 |

#### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 634.622 |   | 617.683 |   |
| 630.084 |   | 614.683 |   |
| 857.341 |   | 614.683 |   |

## Material Boundary

|         | Х       | Y |
|---------|---------|---|
| 630.084 | 614.683 |   |
| 619.623 | 607.683 |   |
| 883.257 | 607.683 |   |

|     | X              | Y       |
|-----|----------------|---------|
|     | 163.025        | 607.683 |
|     | 618.16         | 607.683 |
|     | 616.47         | 608.705 |
|     | 614.473        | 609.765 |
|     | 609.65         | 611.884 |
|     | 600.053        | 616.229 |
|     | 587.784        | 616.335 |
|     | 574.521        | 609.934 |
|     | 429.885        | 609.934 |
|     | 416.848        | 614.683 |
|     | 411.793        | 616.524 |
| Mat | erial Boundary |         |

|         | Х |         | Y |
|---------|---|---------|---|
| 163.025 |   | 595.683 |   |
| 883.257 |   | 595.683 |   |

### Material Boundary

| Х       | Y       |
|---------|---------|
| 618.16  | 607.683 |
| 619.623 | 607.683 |

#### Material Boundary

|       | Х   |         | Y |  |
|-------|-----|---------|---|--|
| 396.  | 735 | 620.734 |   |  |
| 605.· | 437 | 620.734 |   |  |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 306.159 |   | 643.753 |   |
| 531.292 |   | 644.076 |   |

### Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 314.977 |   | 664.076 |   |
| 500.267 |   | 664.076 |   |

|         | Х | Y       |  |
|---------|---|---------|--|
| 343.792 |   | 684.076 |  |
| 466.487 |   | 684.076 |  |

| Material | Boundary |
|----------|----------|
| rateria  | Doundary |

|         | Х |         | Y |
|---------|---|---------|---|
| 364.234 |   | 694.076 |   |
| 446.156 |   | 694.076 |   |

#### Material Boundary

| Х       |         | Y |
|---------|---------|---|
| 349.828 | 633.816 |   |
| 548.455 | 634.1   |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 296.971 |   | 654.076 |   |
| 517.878 |   | 654.076 |   |

# Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 328.899 |   | 674.076 |   |
| 486.876 |   | 674.076 |   |

|         | Х | Y       |  |
|---------|---|---------|--|
| 405.547 |   | 617.683 |  |
| 411.793 |   | 616.524 |  |

### ANHANG 11 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 2 APPENDICE 11 – RISULTATI ANALISI SLIDE SLV – SEZIONE 2

### SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## Table of Contents

| Project Summary                                                   | 3  |
|-------------------------------------------------------------------|----|
| General Settings                                                  | 4  |
| Design Standard                                                   | 5  |
| Analysis Options                                                  | 6  |
| Groundwater Analysis                                              | 7  |
| Random Numbers                                                    | 8  |
| Surface Options                                                   | 9  |
| Seismic Loading                                                   | 10 |
| Materials                                                         | 11 |
| Global Minimums                                                   |    |
| Method: bishop simplified                                         | 13 |
| Valid and Invalid Surfaces                                        |    |
| Method: bishop simplified                                         |    |
| Slice Data                                                        | 15 |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.10585 | 15 |
| Interslice Data                                                   |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.10585 |    |
| Entity Information                                                | 17 |
| Water Table                                                       | 17 |
| External Boundary                                                 | 17 |
| Material Boundary                                                 | 19 |

# Slide2 Analysis Information

# SLIDE - An Interactive Slope Stability Program

## **Project Summary**

| Slide2 Modeler Version: | 9.023                |
|-------------------------|----------------------|
| Compute Time:           | 00h:00m:00.380s      |
| Date Created:           | 16/11/2018, 18:41:47 |

# **General Settings**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |

# Design Standard

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

# Analysis Options

| Slices Type:                  | Vertical              |
|-------------------------------|-----------------------|
|                               | Analysis Methods Used |
|                               | Bishop simplified     |
| Number of slices:             | 25                    |
| Tolerance:                    | 0.005                 |
| Maximum number of iterations: | 50                    |
| Check malpha < 0.2:           | Yes                   |
| Initial trial value of FS:    | 1                     |
| Steffensen Iteration:         | Yes                   |

# Groundwater Analysis

| Groundwater Method:                   | Water Surfaces |
|---------------------------------------|----------------|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |
| Use negative pore pressure cutoff:    | Yes            |
| Maximum negative pore pressure [kPa]: | 0              |
| Advanced Groundwater Method:          | None           |

## **Random Numbers**

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

# Surface Options

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |

# Seismic Loading

| Advanced seismic analysis:             | No     |
|----------------------------------------|--------|
| Staged pseudostatic analysis:          | No     |
| Seismic Load Coefficient (Horizontal): | 0.013  |
| Seismic Load Coefficient (Vertical):   | 0.0065 |

# Materials

| A                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Roccia               |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 400                      |
| Friction Angle [deg] | 29.26                    |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |  |
|---------------------|--------------|--|
| Unit Weight [kN/m3] | 20           |  |
| Cohesion [kPa]      | 0            |  |

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| F1                   |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 20                       |
| Water Surface        | Water Table              |
| Hu Value             | 1                        |

## **Global Minimums**

### Method: bishop simplified

| FS                           | 1.105850         |
|------------------------------|------------------|
| Center:                      | 546.658, 731.206 |
| Radius:                      | 121.380          |
| Left Slip Surface Endpoint:  | 428.349, 704.076 |
| Right Slip Surface Endpoint: | 600.328, 622.336 |
| Resisting Moment:            | 5.81317e+06 kN-m |
| Driving Moment:              | 5.25674e+06 kN-m |
| Total Slice Area:            | 5247.66 m2       |
| Surface Horizontal Width:    | 171.979 m        |
| Surface Average Height:      | 30.5134 m        |

## Global Minimum Support Data

No Supports Present

## Valid and Invalid Surfaces

#### Method: bishop simplified

| Number of Valid Surfaces:   | 3359 |
|-----------------------------|------|
| Number of Invalid Surfaces: | 0    |

## Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.10585

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 6.80192      | 1444.09        | -71.9077                           | А                | 36                        | 31.0834                            | 55.8644                  | 61.7777                    | 42.7602                           | 0                         | 42.7602                                | 213.756                             | 213.756                                  |
| 2               | 6.80192      | 3320.35        | -63.1718                           | А                | 36                        | 31.0834                            | 144.597                  | 159.903                    | 205.531                           | 0                         | 205.531                                | 491.436                             | 491.436                                  |
| 3               | 6.80192      | 4344.86        | -56.688                            | А                | 36                        | 31.0834                            | 209.403                  | 231.568                    | 324.41                            | 0                         | 324.41                                 | 643.05                              | 643.05                                   |
| 4               | 6.80192      | 5505.96        | -51.2007                           | А                | 36                        | 31.0834                            | 284.127                  | 314.202                    | 461.483                           | 0                         | 461.483                                | 814.875                             | 814.875                                  |
| 5               | 6.80192      | 6043.77        | -46.3129                           | А                | 36                        | 31.0834                            | 331.16                   | 366.213                    | 547.759                           | 0                         | 547.759                                | 894.455                             | 894.455                                  |
| 6               | 6.80192      | 6311.79        | -41.833                            | А                | 36                        | 31.0834                            | 364.1                    | 402.64                     | 608.185                           | 0                         | 608.185                                | 934.105                             | 934.105                                  |
| 7               | 6.80192      | 6939.17        | -37.6499                           | А                | 36                        | 31.0834                            | 417.001                  | 461.141                    | 705.226                           | 0                         | 705.226                                | 1026.94                             | 1026.94                                  |
| 8               | 6.80192      | 7058.7         | -33.692                            | А                | 36                        | 31.0834                            | 441.537                  | 488.274                    | 750.235                           | 0                         | 750.235                                | 1044.61                             | 1044.61                                  |
| 9               | 6.80192      | 6936.11        | -29.9098                           | А                | 36                        | 31.0834                            | 450.763                  | 498.476                    | 767.159                           | 0                         | 767.159                                | 1026.46                             | 1026.46                                  |
| 10              | 6.80192      | 6729.78        | -26.2669                           | А                | 36                        | 31.0834                            | 453.469                  | 501.469                    | 772.122                           | 0                         | 772.122                                | 995.915                             | 995.915                                  |
| 11              | 7.52774      | 7206.02        | -22.5522                           | F1               | 0                         | 16.2343                            | 228.694                  | 252.901                    | 868.549                           | 0                         | 868.549                                | 963.522                             | 963.522                                  |
| 12              | 7.52774      | 7136.99        | -18.7515                           | F1               | 0                         | 16.2343                            | 226.693                  | 250.688                    | 877.327                           | 16.3768                   | 860.95                                 | 954.285                             | 937.908                                  |
| 13              | 7.52774      | 6595.31        | -15.0349                           | F1               | 0                         | 16.2343                            | 207.31                   | 229.254                    | 826.167                           | 38.8295                   | 787.337                                | 881.851                             | 843.021                                  |
| 14              | 7.52774      | 5974.44        | -11.3823                           | F1               | 0                         | 16.2343                            | 185.701                  | 205.357                    | 761.447                           | 56.1805                   | 705.266                                | 798.831                             | 742.65                                   |
| 15              | 7.52774      | 5336.48        | -7.77621                           | F1               | 0                         | 16.2343                            | 163.904                  | 181.253                    | 691.143                           | 68.656                    | 622.487                                | 713.525                             | 644.869                                  |
| 16              | 7.52774      | 5002.24        | -4.20099                           | F1               | 0                         | 16.2343                            | 153.028                  | 169.226                    | 657.591                           | 76.4104                   | 581.18                                 | 668.831                             | 592.421                                  |
| 17              | 10.2472      | 5406.07        | 0                                  | F1               | 0                         | 16.2343                            | 118.981                  | 131.575                    | 530.996                           | 79.1226                   | 451.873                                | 530.996                             | 451.873                                  |
| 18              | 6.45235      | 2471.85        | 3.9459                             | F1               | 0                         | 16.2343                            | 82.7704                  | 91.5316                    | 391.29                            | 76.9395                   | 314.351                                | 385.581                             | 308.641                                  |
| 19              | 6.45235      | 2153.07        | 7.00708                            | F1               | 0                         | 16.2343                            | 72.1062                  | 79.7386                    | 344.717                           | 70.8665                   | 273.85                                 | 335.854                             | 264.988                                  |
| 20              | 6.45235      | 1996.72        | 10.0886                            | F1               | 0                         | 16.2343                            | 69.0942                  | 76.4078                    | 323.757                           | 61.3455                   | 262.412                                | 311.464                             | 250.118                                  |
| 21              | 6.45235      | 1844.82        | 13.1999                            | F1               | 0                         | 16.2343                            | 67.2054                  | 74.3191                    | 303.528                           | 48.2914                   | 255.237                                | 287.766                             | 239.474                                  |
| 22              | 6.45235      | 1769.49        | 16.3516                            | F1               | 0                         | 16.2343                            | 69.7484                  | 77.1313                    | 296.478                           | 31.5826                   | 264.896                                | 276.014                             | 244.432                                  |
| 23              | 6.45235      | 1385.31        | 19.5552                            | F1               | 0                         | 16.2343                            | 59.5556                  | 65.8596                    | 237.239                           | 11.0552                   | 226.184                                | 216.085                             | 205.03                                   |
| 24              | 6.45235      | 505.251        | 22.8239                            | F1               | 0                         | 16.2343                            | 23.3372                  | 25.8074                    | 88.6315                           | 0                         | 88.6315                                | 78.81                               | 78.81                                    |
| 25              | 3.37981      | 48.0315        | 25.3592                            | А                | 36                        | 31.0834                            | 54.4022                  | 60.1607                    | 40.0779                           | 0                         | 40.0779                                | 14.2933                             | 14.2933                                  |
| т               | It           |                | - 1 -                              |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

### Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.10585

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] |         | Normal Force<br>[kN] |   | Shear Force<br>[kN] |   | Force Angle [deg] |
|----|--------------|------------------|------------------------------|---------|----------------------|---|---------------------|---|-------------------|
| 1  |              | 428.349          | 704.076                      | 0       |                      | 0 |                     | 0 |                   |
| 2  |              | 435.151          | 683.256                      | 529.207 |                      | 0 |                     | 0 |                   |
| 3  |              | 441.953          | 669.807                      | 2353.43 |                      | 0 |                     | 0 |                   |
| 4  |              | 448.755          | 659.456                      | 4343.86 |                      | 0 |                     | 0 |                   |
| 5  |              | 455.557          | 650.996                      | 6387.8  |                      | 0 |                     | 0 |                   |
| 6  |              | 462.359          | 643.875                      | 8115.36 |                      | 0 |                     | 0 |                   |
| 7  |              | 469.161          | 637.787                      | 9424.86 |                      | 0 |                     | 0 |                   |
| 8  |              | 475.963          | 632.539                      | 10380.6 |                      | 0 |                     | 0 |                   |
| 9  |              | 482.765          | 628.004                      | 10872.5 |                      | 0 |                     | 0 |                   |
| 10 |              | 489.566          | 624.091                      | 10899.6 |                      | 0 |                     | 0 |                   |
| 11 |              | 496.368          | 620.734                      | 10495.8 |                      | 0 |                     | 0 |                   |
| 12 |              | 503.896          | 617.608                      | 11583.8 |                      | 0 |                     | 0 |                   |
| 13 |              | 511.424          | 615.053                      | 12212.8 |                      | 0 |                     | 0 |                   |

#### giovedì 3 novembre 2022

| 14 | 518.952 | 613.031 | 12409.1 | 0 | 0 |
|----|---------|---------|---------|---|---|
| 15 | 526.479 | 611.515 | 12243.3 | 0 | 0 |
| 16 | 534.007 | 610.487 | 11789.9 | 0 | 0 |
| 17 | 541.535 | 609.934 | 11067   | 0 | 0 |
| 18 | 551.782 | 609.934 | 9918.57 | 0 | 0 |
| 19 | 558.234 | 610.379 | 9242.7  | 0 | 0 |
| 20 | 564.687 | 611.172 | 8532.24 | 0 | 0 |
| 21 | 571.139 | 612.321 | 7740.88 | 0 | 0 |
| 22 | 577.591 | 613.834 | 6872.06 | 0 | 0 |
| 23 | 584.044 | 615.727 | 5883.93 | 0 | 0 |
| 24 | 590.496 | 618.019 | 4974.1  | 0 | 0 |
| 25 | 596.948 | 620.734 | 4589.47 | 0 | 0 |
| 26 | 600.328 | 622.336 | 0       | 0 | 0 |

# **Discharge Sections**

# **Entity Information**

Water Table

|     | Х |     | Y |
|-----|---|-----|---|
| 150 |   | 618 |   |
| 900 |   | 618 |   |

External Boundary

|         | Х |         | Y |  |
|---------|---|---------|---|--|
| 461.174 |   | 688.076 |   |  |
| 453.219 |   | 694.076 |   |  |
| 446.156 |   | 694.076 |   |  |
| 432.817 |   | 704.076 |   |  |
| 415.55  |   | 704.076 |   |  |
| 410.273 |   | 704.076 |   |  |
| 406.154 |   | 704.076 |   |  |
| 401.047 |   | 704.076 |   |  |
| 396.103 |   | 704.076 |   |  |
| 391.434 |   | 704.076 |   |  |
| 391.434 |   | /04.076 |   |  |

| 387.418 | 704.076 |
|---------|---------|
| 385.446 | 703.223 |
| 381.277 | 701.461 |
| 368.133 | 695.765 |
| 364.234 | 694.076 |
| 359.124 | 691.862 |
| 353.54  | 689.436 |
| 349.648 | 687.548 |
| 343.792 | 684.076 |
| 341.013 | 682.428 |
| 328.899 | 674.076 |
| 323.401 | 670.284 |
| 314.977 | 664.076 |
| 310.689 | 664.076 |
| 306.758 | 661.178 |
| 301.708 | 657.506 |
| 298.442 | 655.163 |
| 296.971 | 654.076 |
| 295.313 | 652.851 |
| 290.499 | 649.508 |
| 265.639 | 663.027 |
| 261.527 | 663.141 |
| 243.261 | 677.78  |
| 221.846 | 681.968 |
| 199.673 | 685.173 |
|         |         |

#### 163.025

713

| 163.025            | 617.683 |
|--------------------|---------|
| 163.025            | 614.683 |
| 163.025            | 607.683 |
| 163.025            | 595.683 |
| 163.025            | 520.734 |
| 883.257            | 520.734 |
| 883.257            | 595.683 |
| 883.257            | 607.683 |
| 883.257            | 611.215 |
| 871.403            | 610.663 |
| 868.175            | 614.297 |
| 857.341            | 614.683 |
| 852.521            | 617.683 |
| 851.96             | 618.032 |
| 848.524            | 618.028 |
| 844.639            | 620.734 |
| 689.364            | 620.734 |
| 639.238            | 620.734 |
| 605.437            | 620.734 |
| 602.256            | 622,695 |
| 601.53             | 622.676 |
| 600.218            | 622.305 |
| 599.431            | 622.249 |
| 597.879            | 622.162 |
| 597.114            | 622.151 |
| 596.621            | 622.148 |
| 595.445            | 622.229 |
| 593.94             | 623.059 |
| 593,199            | 623.082 |
| 592.8              | 623 126 |
| 589 985            | 625,759 |
| 589 298            | 626 016 |
| 588 106            | 627 101 |
| 586 169            | 627.101 |
| 583 013            | 629 224 |
| 581 231            | 627.886 |
| 572 752            | 626.834 |
| 571 587            | 626.818 |
| 568 284            | 626.892 |
| 562 751            | 627.073 |
| 56 728             | 627.075 |
| 552 780            | 630 576 |
|                    | 624 1   |
| 540.455            | 627 602 |
| 544.059            | 630.692 |
| 541.814<br>F2F F12 | 039.570 |
| 535.51Z            | 644.076 |
| 501.292<br>500 570 |         |
| 522.575<br>F17.979 | 050.570 |
| 51/.ð/ð            | 654.076 |
| 510.5              | 059.5/6 |
| 504.499            | 664.076 |
| 500.267            | 664.076 |

| 492.232 | 670.076 |
|---------|---------|
| 486.876 | 674.076 |
| 480.18  | 679.076 |
| 473.503 | 684.076 |
| 466.487 | 684.076 |
|         |         |

### Material Boundary

| Х       |         | Y |
|---------|---------|---|
| 163.025 | 617.683 |   |
| 405.547 | 617.683 |   |
| 396.735 | 620.734 |   |
| 380.175 | 627.103 |   |
| 349.828 | 633.816 |   |
| 310.926 | 642.422 |   |
| 306.159 | 643.753 |   |
| 301.413 | 643.574 |   |
| 290.499 | 649.508 |   |
|         |         |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 639.238 |   | 620.734 |   |
| 634.622 |   | 617.683 |   |
| 852.521 |   | 617.683 |   |

### Material Boundary

|   |        | X |         | Y |
|---|--------|---|---------|---|
| 1 | 53.025 |   | 614.683 |   |
| 4 | 16.848 |   | 614.683 |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 634.622 |   | 617.683 |   |
| 630.084 |   | 614.683 |   |
| 857.341 |   | 614.683 |   |

## Material Boundary

|         | Х       | Y |
|---------|---------|---|
| 630.084 | 614.683 |   |
| 619.623 | 607.683 |   |
| 883.257 | 607.683 |   |

|          | X        |         | Y |
|----------|----------|---------|---|
| 163.0    | 25       | 607.683 |   |
| 618.1    | .6       | 607.683 |   |
| 616.4    | 17       | 608.705 |   |
| 614.4    | 173      | 609.765 |   |
| 609.6    | 55       | 611.884 |   |
| 600.0    | 953      | 616.229 |   |
| 587.7    | 784      | 616.335 |   |
| 574.5    | 521      | 609.934 |   |
| 429.8    | 385      | 609.934 |   |
| 416.8    | 348      | 614.683 |   |
| 411.7    | 793      | 616.524 |   |
| Material | Boundary |         |   |

|         | Х |         | Y |
|---------|---|---------|---|
| 163.025 |   | 595.683 |   |
| 883.257 |   | 595.683 |   |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 618.16  |   | 607.683 |   |
| 619.623 |   | 607.683 |   |

#### Material Boundary

|   |        | Х |         | Y |
|---|--------|---|---------|---|
| 3 | 96.735 |   | 620.734 |   |
| 6 | 05.437 |   | 620.734 |   |

### Material Boundary

| Х       | Y       |  |
|---------|---------|--|
| 306.159 | 643.753 |  |
| 531.292 | 644.076 |  |

### Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 314.977 |   | 664.076 |   |
| 500.267 |   | 664.076 |   |

|         | Х | Y       |  |
|---------|---|---------|--|
| 343.792 |   | 684.076 |  |
| 466.487 |   | 684.076 |  |

| Material | Boundary |
|----------|----------|
| rateria  | Doundary |

|         | Х |         | Y |
|---------|---|---------|---|
| 364.234 |   | 694.076 |   |
| 446.156 |   | 694.076 |   |

### Material Boundary

| X       |         | Y |  |
|---------|---------|---|--|
| 349.828 | 633.816 |   |  |
| 548.455 | 634.1   |   |  |

### Material Boundary

|         | Х |         | Y |
|---------|---|---------|---|
| 296.971 |   | 654.076 |   |
| 517.878 |   | 654.076 |   |

# Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 328.899 |   | 674.076 |   |
| 486.876 |   | 674.076 |   |

|         | X | Y       |
|---------|---|---------|
| 405.547 |   | 617.683 |
| 411.793 |   | 616.524 |

ANHANG 12 – ERGEBNISSE DER PLAXIS SLU/SLV – ABSCHNITT 3 APPENDICE 12 – RISULTATI ANALISI PLAXIS SLU/SLV – SEZIONE 3

# **PLAXIS Report**

1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/20), Materials plot




1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Materials plot



1.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Materials plot



1.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Materials plot



1.1.1.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Materials plot



1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Materials plot



1.1.1.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Materials plot





1.1.1.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Materials plot



1.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Materials plot





### 1.1.2.1.1 Materials - Soil and interfaces - Hardening soil

| Identification        |       | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|-----------------------|-------|----------|----------|----------|----------|----------|
| Identification number |       | 1        | 2        | 3        | 4        | 5        |
| Drainage type         |       | Drained  | Drained  | Drained  | Drained  | Drained  |
| Colour                |       |          |          |          |          |          |
| Comments              |       |          |          |          |          |          |
| $\gamma$ unsat        | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| $\gamma$ sat          | kN/m³ | 20,00    | 20,00    | 20,00    | 20,00    | 20,00    |
| Dilatancy cut-off     |       | No       | No       | No       | No       | No       |
| e init                |       | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| e min                 |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| e max                 |       | 999,0    | 999,0    | 999,0    | 999,0    | 999,0    |
| Rayleigh a            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Rayleigh β            |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| E 50 ref              | kN/m² | 25,00E3  | 40,00E3  | 50,00E3  | 30,00E3  | 70,00E3  |
| E oed ref             | kN/m² | 23,55E3  | 36,94E3  | 45,27E3  | 28,84E3  | 66,76E3  |
| E ur ref              | kN/m² | 75,00E3  | 120,0E3  | 150,0E3  | 90,00E3  | 210,0E3  |
| power (m)             |       | 0,000    | 0,000    | 0,000    | 0,000    | 0,4000   |
| Use alternatives      |       | No       | No       | No       | No       | No       |
| C c                   |       | 0,01465  | 9,339E-3 | 7,621E-3 | 0,01196  | 5,167E-3 |

| Identification         |         | Strato 1 | Strato 2 | Strato 3 | Strato 4 | Strato 5 |
|------------------------|---------|----------|----------|----------|----------|----------|
| C s                    |         | 4,140E-3 | 2,587E-3 | 2,070E-3 | 3,450E-3 | 1,479E-3 |
| e init                 |         | 0,5000   | 0,5000   | 0,5000   | 0,5000   | 0,5000   |
| C ref                  | kN/m²   | 4,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| φ (phi)                | 0       | 32,01    | 33,87    | 35,77    | 30,17    | 30,17    |
| ψ (psi)                | 0       | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Set to default values  |         | No       | No       | No       | No       | No       |
| V ur                   |         | 0,2000   | 0,2000   | 0,2000   | 0,2000   | 0,2000   |
| p ref                  | kN/m²   | 100,0    | 100,0    | 100,0    | 100,0    | 100,0    |
| K 0 nc                 |         | 0,3943   | 0,3695   | 0,3449   | 0,4194   | 0,4217   |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    | 608,0    |
| R r                    |         | 0,9000   | 0,9000   | 0,9000   | 0,9000   | 0,9000   |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9866   | 0,9866   | 0,9866   | 0,9866   | 0,9866   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,073E6  | 4,917E6  | 6,146E6  | 3,687E6  | 8,604E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard | Standard |

| Strength                            |          | Rigid       | Rigid       | Rigid       | Rigid       | Rigid       |
|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|
| R inter                             |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| Consider gap closure                |          | Yes         | Yes         | Yes         | Yes         | Yes         |
|                                     |          |             |             |             |             |             |
| Identification                      |          | Strato 1    | Strato 2    | Strato 3    | Strato 4    | Strato 5    |
| $\delta$ inter                      |          | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Cross permeability                  |          | Impermeable | Impermeable | Impermeable | Impermeable | Impermeable |
| Drainage conductivity, dk           | m³/day/m | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| R                                   | m² K/kW  | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| K o determination                   |          | Automatic   | Automatic   | Automatic   | Automatic   | Automatic   |
| K <sub>0,x</sub> = K <sub>0,z</sub> |          | Yes         | Yes         | Yes         | Yes         | Yes         |
| К о,х                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| K 0,z                               |          | 0,3943      | 0,3695      | 0,3449      | 0,4194      | 0,4217      |
| OCR                                 |          | 1,000       | 1,000       | 1,000       | 1,000       | 1,000       |
| POP                                 | kN/m²    | 0,000       | 0,000       | 0,000       | 0,000       | 0,000       |
| Data set                            |          | Standard    | Standard    | Standard    | Standard    | Standard    |
| Туре                                |          | Coarse      | Coarse      | Coarse      | Coarse      | Coarse      |
| < 2 µm                              | %        | 10,00       | 10,00       | 10,00       | 10,00       | 10,00       |
| 2 µm - 50 µm                        | %        | 13,00       | 13,00       | 13,00       | 13,00       | 13,00       |
| 50 µm - 2 mm                        | %        | 77,00       | 77,00       | 77,00       | 77,00       | 77,00       |
| Use defaults                        |          | None        | None        | None        | None        | None        |

| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
|-------------------------|--------|------------|------------|------------|------------|------------|
| k y                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| -Ψ unsat                | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S s                     | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| C k                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
|                         |        |            |            |            |            |            |
| Identification          |        | Strato 1   | Strato 2   | Strato 3   | Strato 4   | Strato 5   |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| ρs                      | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| D v                     | m²/day | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| fтv                     |        | 0,000      | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       | None       |

### 1.1.2.1.2 Materials - Soil and interfaces - Mohr-Coulomb

| Identification        |       | Rock    | А       | F1      | GNEISS  |
|-----------------------|-------|---------|---------|---------|---------|
| Identification number |       | 6       | 7       | 8       | 9       |
| Drainage type         |       | Drained | Drained | Drained | Drained |
| Colour                |       |         | -       |         |         |
| Comments              |       |         |         |         |         |
| $\gamma$ unsat        | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| $\gamma$ sat          | kN/m³ | 20,00   | 21,00   | 20,00   | 20,00   |
| Dilatancy cut-off     |       | No      | No      | No      | No      |
| e init                |       | 0,5000  | 0,5000  | 0,5000  | 0,5000  |
| e min                 |       | 0,000   | 0,000   | 0,000   | 0,000   |
| e <sub>max</sub>      |       | 999,0   | 999,0   | 999,0   | 999,0   |
| Rayleigh a            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| Rayleigh β            |       | 0,000   | 0,000   | 0,000   | 0,000   |
| E                     | kN/m² | 100,0E3 | 30,00E3 | 5000    | 30,00E3 |
| v (nu)                |       | 0,3000  | 0,3000  | 0,3000  | 0,3000  |
| G                     | kN/m² | 38,46E3 | 11,54E3 | 1923    | 11,54E3 |
| E oed                 | kN/m² | 134,6E3 | 40,38E3 | 6731    | 40,38E3 |

| Identification         |         | Rock     | А        | F1       | GNEISS   |
|------------------------|---------|----------|----------|----------|----------|
| C ref                  | kN/m²   | 500,0    | 36,00    | 0,000    | 40,00    |
| φ (phi)                | 0       | 35,00    | 31,08    | 20,00    | 36,00    |
| ψ (psi)                | 0       | 0,000    | 3,000    | 0,000    | 3,000    |
| V s                    | m/s     | 137,4    | 73,42    | 30,71    | 75,23    |
| V p                    | m/s     | 257,0    | 137,4    | 57,46    | 140,7    |
| Set to default values  |         | Yes      | Yes      | Yes      | Yes      |
| E inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| C inc                  | kN/m²/m | 0,000    | 0,000    | 0,000    | 0,000    |
| <b>y</b> ref           | m       | 0,000    | 0,000    | 0,000    | 0,000    |
| Tension cut-off        |         | Yes      | Yes      | Yes      | Yes      |
| Tensile strength       | kN/m²   | 0,000    | 0,000    | 0,000    | 0,000    |
| Undrained behaviour    |         | Standard | Standard | Standard | Standard |
| Skempton-B             |         | 0,9783   | 0,9783   | 0,9783   | 0,9783   |
| V u                    |         | 0,4950   | 0,4950   | 0,4950   | 0,4950   |
| K <sub>w,ref</sub> / n | kN/m²   | 3,750E6  | 1,125E6  | 187,5E3  | 1,125E6  |
| Stiffness              |         | Standard | Standard | Standard | Standard |

| Strength                        |          | Rigid                                                | Rigid                                            | Rigid                                                | Rigid                                            |
|---------------------------------|----------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| R inter                         |          | 1,000                                                | 1,000                                            | 1,000                                                | 1,000                                            |
| Identification                  |          | Rock                                                 | А                                                | F1                                                   | GNEISS                                           |
| Consider gap closure            |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| $\delta$ inter                  |          | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| Cross permeability              |          | Impermeable                                          | Impermeable                                      | Impermeable                                          | Impermeable                                      |
| Drainage conductivity, dk       | m³/day/m | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| R                               | m² K/kW  | 0,000                                                | 0,000                                            | 0,000                                                | 0,000                                            |
| K o determination               |          | Automatic                                            | Automatic                                        | Automatic                                            | Automatic                                        |
| $K_{0,x} = K_{0,z}$             |          | Yes                                                  | Yes                                              | Yes                                                  | Yes                                              |
| К о,х                           |          | 0,4264                                               | 0,4837                                           | 0,6580                                               | 0,4122                                           |
| K 0,z                           |          | 0,4264                                               | 0,4837                                           | 0,6580                                               | 0,4122                                           |
| Data set                        |          |                                                      |                                                  |                                                      |                                                  |
|                                 |          | Standard                                             | USDA                                             | Standard                                             | USDA                                             |
| Model                           |          | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            | Standard<br>Van Genuchten                            | USDA<br>Van Genuchten                            |
| Model<br>Type                   |          | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  | Standard<br>Van Genuchten<br>Coarse                  | USDA<br>Van Genuchten<br>Coarse                  |
| Model<br>Type<br>Type           |          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          | Standard<br>Van Genuchten<br>Coarse<br>Sand          | USDA<br>Van Genuchten<br>Coarse<br>Sand          |
| Model<br>Type<br>Type<br>< 2 μm | %        | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 | Standard<br>Van Genuchten<br>Coarse<br>Sand<br>10,00 | USDA<br>Van Genuchten<br>Coarse<br>Sand<br>4,000 |

| 50 µm - 2 mm            | %      | 77,00      | 92,00      | 77,00      | 92,00      |
|-------------------------|--------|------------|------------|------------|------------|
| Use defaults            |        | None       | None       | None       | None       |
| k x                     | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| k <sub>γ</sub>          | m/day  | 0,000      | 0,000      | 0,000      | 0,000      |
| Identification          |        | Rock       | А          | F1         | GNEISS     |
| -ψ <sub>unsat</sub>     | m      | 10,00E3    | 10,00E3    | 10,00E3    | 10,00E3    |
| e init                  |        | 0,5000     | 0,5000     | 0,5000     | 0,5000     |
| S <sub>s</sub>          | 1/m    | 0,000      | 0,000      | 0,000      | 0,000      |
| С к                     |        | 1000E12    | 1000E12    | 1000E12    | 1000E12    |
| C s                     | kJ/t/K | 0,000      | 0,000      | 0,000      | 0,000      |
| λs                      | kW/m/K | 0,000      | 0,000      | 0,000      | 0,000      |
| ρ <sub>s</sub>          | t/m³   | 0,000      | 0,000      | 0,000      | 0,000      |
| Solid thermal expansion |        | Volumetric | Volumetric | Volumetric | Volumetric |
| a_s                     | 1/K    | 0,000      | 0,000      | 0,000      | 0,000      |
| D <sub>v</sub>          | m²/day | 0,000      | 0,000      | 0,000      | 0,000      |
| f <sub>Tv</sub>         |        | 0,000      | 0,000      | 0,000      | 0,000      |
| Unfrozen water content  |        | None       | None       | None       | None       |

### 1.1.3.1 Calculation information

### Calculation information

| Phase                     | Initial phase [InitialPhase] |       |                   |       |
|---------------------------|------------------------------|-------|-------------------|-------|
| Step                      | Initial                      |       |                   |       |
| Calulation mode           | Classical mode               |       |                   |       |
| Step type                 | Gravity loading              |       |                   |       |
| Solver type               | Picos                        |       |                   |       |
| Kernel type               | 64 bit                       |       |                   |       |
| Extrapolation factor      | 0,8634                       |       |                   |       |
| Relative stiffness        | 0,3201                       |       |                   |       |
| Design approach           |                              |       |                   |       |
| Index                     | 1                            |       |                   |       |
| Name                      | DesignApproach_1             |       |                   |       |
| Multipliers               |                              |       |                   |       |
| Soil weight               |                              |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf                         | 0,000 | ΣM sf             | 1,000 |
| Time                      | Increment                    | 0,000 | End time          | 0,000 |

#### Calculation information Staged construction Active proportion total area 0,8300 M <sub>Area</sub> 0,1843 $\Sigma M$ Area Active proportion of stage M <sub>Stage</sub> 0,2220 $\Sigma M$ Stage 1,000 Forces F x 0,000 kN/m Fγ 0,000 kN/m Consolidation 0,000 kN/m <sup>2</sup> Realised P Excess, Max

### 1.1.3.2 Calculation information

### Step info

| Phase                     | Phase_1 [Phase_1] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,5299            |       |                   |       |
| Relative stiffness        | 0,3197            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01035 | $\Sigma M$ Area  | 0,8690 |
| Active proportion of stage   | M stage                 | 0,1114  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

### 1.1.3.3 Calculation information

# Step info

| Phase                     | Phase_2 [Phase_2] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,8627            |       |                   |       |
| Relative stiffness        | 0,3544            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |         |                  |        |
|------------------------------|-------------------------|---------|------------------|--------|
| Time                         | Increment               | 0,000   | End time         | 0,000  |
| Staged construction          |                         |         |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 0,01951 | $\Sigma M$ Area  | 0,9252 |
| Active proportion of stage   | M stage                 | 0,1868  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |         |                  |        |
| F x                          | 0,000 kN/m              |         |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |         |                  |        |
| Consolidation                |                         |         |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |         |                  |        |

### 1.1.3.4 Calculation information

# Step info

| Phase                     | Phase_3 [Phase_3] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,1803            |       |                   |       |
| Relative stiffness        | 0,4064            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 4,440E-3 | $\Sigma M$ Area  | 0,9744 |
| Active proportion of stage   | M stage                 | 0,05640  | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

## 1.1.3.5 Calculation information

### Calculation information

| Phase                     | Phase_4 [Phase_4] |       |                   |       |
|---------------------------|-------------------|-------|-------------------|-------|
| Step                      | Initial           |       |                   |       |
| Calulation mode           | Classical mode    |       |                   |       |
| Step type                 | Plastic           |       |                   |       |
| Updated mesh              | False             |       |                   |       |
| Solver type               | Picos             |       |                   |       |
| Kernel type               | 64 bit            |       |                   |       |
| Extrapolation factor      | 0,9476            |       |                   |       |
| Relative stiffness        | 0,4383            |       |                   |       |
| Design approach           |                   |       |                   |       |
| Index                     | 1                 |       |                   |       |
| Name                      | DesignApproach_1  |       |                   |       |
| Multipliers               |                   |       |                   |       |
| Soil weight               |                   |       | $\Sigma M$ Weight | 1,000 |
| Strength reduction factor | M sf              | 0,000 | ΣM sf             | 1,000 |

| Calculation information      |                         |          |                  |        |
|------------------------------|-------------------------|----------|------------------|--------|
| Time                         | Increment               | 0,000    | End time         | 0,000  |
| Staged construction          |                         |          |                  |        |
| Active proportion total area | M <sub>Area</sub>       | 9,477E-3 | $\Sigma M$ Area  | 0,9944 |
| Active proportion of stage   | M stage                 | 0,3175   | $\Sigma M$ stage | 1,000  |
| Forces                       |                         |          |                  |        |
| F x                          | 0,000 kN/m              |          |                  |        |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                  |        |
| Consolidation                |                         |          |                  |        |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                  |        |

## 1.1.3.6 Calculation information

### Calculation information

| Phase                     | Phase_5_static [Phase_5] |       |                      |       |
|---------------------------|--------------------------|-------|----------------------|-------|
| Step                      | Initial                  |       |                      |       |
| Calulation mode           | Classical mode           |       |                      |       |
| Step type                 | Plastic                  |       |                      |       |
| Updated mesh              | False                    |       |                      |       |
| Solver type               | Picos                    |       |                      |       |
| Kernel type               | 64 bit                   |       |                      |       |
| Extrapolation factor      | 0,3671                   |       |                      |       |
| Relative stiffness        | 0,4604                   |       |                      |       |
| Design approach           |                          |       |                      |       |
| Index                     | 1                        |       |                      |       |
| Name                      | DesignApproach_1         |       |                      |       |
| Multipliers               |                          |       |                      |       |
| Soil weight               |                          |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                     | 0,000 | ΣM sf                | 1,000 |

| Calculation information      |                         |          |                     |       |
|------------------------------|-------------------------|----------|---------------------|-------|
| Time                         | Increment               | 0,000    | End time            | 0,000 |
| Staged construction          |                         |          |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 1,023E-3 | $\Sigma M_{Area}$   | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub>      | 0,1459   | ΣM <sub>Stage</sub> | 1,000 |
| Forces                       |                         |          |                     |       |
| F x                          | 0,000 kN/m              |          |                     |       |
| F <sub>Y</sub>               | 0,000 kN/m              |          |                     |       |
| Consolidation                |                         |          |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |          |                     |       |

### 1.1.3.7 Calculation information

### Calculation information

| Phase                     | Phase_6 FoS static [Phase_6] |            |                      |       |
|---------------------------|------------------------------|------------|----------------------|-------|
| Step                      | Initial                      |            |                      |       |
| Calulation mode           | Classical mode               |            |                      |       |
| Step type                 | Safety                       |            |                      |       |
| Updated mesh              | False                        |            |                      |       |
| Solver type               | Picos                        |            |                      |       |
| Kernel type               | 64 bit                       |            |                      |       |
| Extrapolation factor      | 1,000                        |            |                      |       |
| Relative stiffness        | 0,4728E-3                    |            |                      |       |
| Design approach           |                              |            |                      |       |
| Index                     | 1                            |            |                      |       |
| Name                      | DesignApproach_1             |            |                      |       |
| Multipliers               |                              |            |                      |       |
| Soil weight               |                              |            | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                         | -0,4330E-3 | ΣM sf                | 1,106 |

| Calculation information      |                         |       |                     |       |
|------------------------------|-------------------------|-------|---------------------|-------|
| Time                         | Increment               | 0,000 | End time            | 0,000 |
| Staged construction          |                         |       |                     |       |
| Active proportion total area | M <sub>Area</sub>       | 0,000 | $\Sigma M$ Area     | 1,000 |
| Active proportion of stage   | M stage                 | 0,000 | ΣM <sub>Stage</sub> | 0,000 |
| Forces                       |                         |       |                     |       |
| F x                          | 0,000 kN/m              |       |                     |       |
| Fr                           | 0,000 kN/m              |       |                     |       |
| Consolidation                |                         |       |                     |       |
| Realised P Excess,Max        | 0,000 kN/m <sup>2</sup> |       |                     |       |

## 1.1.3.8 Calculation information

### Calculation information

| Phase                     | Phase_8_seismic [Phase_8] |       |                      |       |
|---------------------------|---------------------------|-------|----------------------|-------|
| Step                      | Initial                   |       |                      |       |
| Calulation mode           | Classical mode            |       |                      |       |
| Step type                 | Plastic                   |       |                      |       |
| Updated mesh              | False                     |       |                      |       |
| Solver type               | Picos                     |       |                      |       |
| Kernel type               | 64 bit                    |       |                      |       |
| Extrapolation factor      | 0,2251                    |       |                      |       |
| Relative stiffness        | 0,3675                    |       |                      |       |
| Design approach           |                           |       |                      |       |
| Index                     | 1                         |       |                      |       |
| Name                      | DesignApproach_1          |       |                      |       |
| Multipliers               |                           |       |                      |       |
| Soil weight               |                           |       | ΣM <sub>Weight</sub> | 1,000 |
| Strength reduction factor | M sf                      | 0,000 | ΣM sf                | 1,000 |

| Calculation information         |                               |         |                     |       |  |  |
|---------------------------------|-------------------------------|---------|---------------------|-------|--|--|
| Time                            | Increment                     | 0,000   | End time            | 0,000 |  |  |
| Staged construction             |                               |         |                     |       |  |  |
| Active proportion total area    | M <sub>Area</sub>             | 0,000   | $\Sigma M$ Area     | 1,000 |  |  |
| Active proportion of stage      | M Stage                       | 0,08568 | ΣM <sub>Stage</sub> | 1,000 |  |  |
| Forces                          |                               |         |                     | 1     |  |  |
| F x                             | 0,000 kN/m                    |         |                     |       |  |  |
| Fr                              | 0,000 kN/m                    |         |                     |       |  |  |
| Consolidation                   |                               |         |                     |       |  |  |
| Realised P Excess,Max           | 0,000 kN/m <sup>2</sup>       |         |                     | 1     |  |  |
| Pseudo-static acceleration      |                               |         |                     |       |  |  |
| X                               | 0,01300 g                     |         |                     | 1     |  |  |
| Y                               | 6,000E-3 g                    |         |                     |       |  |  |
| 1.1.3.9 Calculation information |                               |         |                     |       |  |  |
| Calculation information         |                               |         |                     |       |  |  |
| Step info                       |                               |         |                     | I     |  |  |
| Phase                           | Phase_7 FoS seismic [Phase_7] |         |                     |       |  |  |
| Step                            | Initial                       |         |                     |       |  |  |

| Calulation mode              | Classical mode     |           |                     |       |
|------------------------------|--------------------|-----------|---------------------|-------|
| Step type                    | Safety             |           |                     |       |
| Updated mesh                 | False              |           |                     |       |
| Solver type                  | Picos              |           |                     |       |
| Kernel type                  | 64 bit             |           |                     |       |
| Extrapolation factor         | 1,000              |           |                     |       |
| Relative stiffness           | 0,05464E-3         |           |                     |       |
| Design approach              |                    |           |                     |       |
| Index                        | 1                  |           |                     |       |
| Name                         | DesignApproach_1   |           |                     |       |
| Multipliers                  |                    |           |                     |       |
| Soil weight                  |                    |           | $\Sigma M$ weight   | 1,000 |
| Strength reduction factor    | M sf               | -1,253E-3 | ΣM sf               | 1,141 |
| Calculation information      |                    |           |                     |       |
| Time                         | Increment          | 0,000     | End time            | 0,000 |
| Staged construction          |                    |           |                     |       |
| Active proportion total area | M <sub>Area</sub>  | 0,000     | ΣM <sub>Area</sub>  | 1,000 |
| Active proportion of stage   | M <sub>Stage</sub> | 0,000     | ΣM <sub>Stage</sub> | 0,000 |

### Forces

| F x                              |          | 0,000 kN/m                  |                         |                                   |                 |            |               |
|----------------------------------|----------|-----------------------------|-------------------------|-----------------------------------|-----------------|------------|---------------|
| Fy                               |          | 0,000 kN/m                  |                         |                                   |                 |            |               |
| Consolidation                    |          |                             |                         |                                   |                 |            |               |
| Realised P Excess,Max            |          | 0,000 kN/m                  | 2                       |                                   |                 |            |               |
| Pseudo-static acceleration       |          |                             |                         |                                   |                 |            |               |
| x                                |          | 0,01300 g                   |                         |                                   |                 |            |               |
| Y                                |          | 6,000E-3 g                  |                         |                                   |                 |            |               |
| 1.1.4 Calculation information pe | er phase |                             |                         |                                   |                 |            |               |
| Identification                   | Phase    | Start from Calculation type | Loading input           | Pore pressure                     | Time step [day] | First step | Last step Log |
| Initial phase [InitialPhase]     | 0        | N/A Gravity loading         | N/A                     | Phreatic                          | 0,000           | 0          | 20            |
| Phase_1 [Phase_1]                | 8        | 0 Plastic                   | Staged construction     | Phreatic                          | 0,000           | 21         | 27            |
| Phase_2 [Phase_2]                | 9        | 8 Plastic                   | Staged construction     | Phreatic                          | 0,000           | 28         | 33            |
| Phase_3 [Phase_3]                | 10       | 9 Plastic                   | Staged construction     | Phreatic                          | 0,000           | 34         | 38            |
| Phase_4 [Phase_4]                | 11       | 10 Plastic                  | Staged construction     | Phreatic                          | 0,000           | 39         | 41            |
| Phase_5_static [Phase_5]         | 12       | 11 Plastic                  | Staged construction     | Phreatic                          | 0,000           | 42         | 44            |
| Phase_6 FoS static [Phase_6]     | 13       | 12 Safety                   | Incremental multipliers | Use pressures from previous phase | 0,000           | 45         | 144           |
| Phase_8_seismic [Phase_8]        | 2        | 12 Plastic                  | Staged construction     | Phreatic                          | 0,000           | 145        | 147           |
| Phase_7 FoS seismic [Phase_7]    | 1        | 2 Safety                    | Incremental multipliers | Use pressures from previous phase | 0,000           | 148        | 247           |

# 1.1.5.1 Step info

| Step | Phase Step type   | Extrapolation factor | Relative stiffness [10 -3 ] |
|------|-------------------|----------------------|-----------------------------|
| 20   | 0 Gravity loading | 0,863                | 320,132                     |
| 27   | 8 Plastic         | 0,530                | 319,650                     |
| 33   | 9 Plastic         | 0,863                | 354,417                     |
| 38   | 10 Plastic        | 0,180                | 406,431                     |
| 41   | 11 Plastic        | 0,948                | 438,309                     |
| 44   | 12 Plastic        | 0,367                | 460,448                     |
| 144  | 13 Safety         | 1,000                | 0,473                       |
| 147  | 2 Plastic         | 0,225                | 367,519                     |
| 247  | 1 Safety          | 1,000                | 0,055                       |

| 1. | 1.5.2 | 2 Mult | ipliers |
|----|-------|--------|---------|
|----|-------|--------|---------|

| Step | Phase $\Sigma M$ DispX | ΣM <sub>DispY</sub> | $\Sigma M$ weight | M sf   | ΣM sf |
|------|------------------------|---------------------|-------------------|--------|-------|
| 20   | 0 0,000                | 0,000               | 1,000             | 0,000  | 1,000 |
| 27   | 8 0,000                | 0,000               | 1,000             | 0,000  | 1,000 |
| 33   | 9 0,000                | 0,000               | 1,000             | 0,000  | 1,000 |
| 38   | 10 0,000               | 0,000               | 1,000             | 0,000  | 1,000 |
| 41   | 11 0,000               | 0,000               | 1,000             | 0,000  | 1,000 |
| 44   | 12 0,000               | 0,000               | 1,000             | 0,000  | 1,000 |
| 144  | 13 0,000               | 0,000               | 1,000             | 0,000  | 1,106 |
| 147  | 2 0,000                | 0,000               | 1,000             | 0,000  | 1,000 |
| 247  | 1 0,000                | 0,000               | 1,000             | -0,001 | 1,141 |
| 1.1.5.3 Time |      |                       |                |  |  |  |  |
|--------------|------|-----------------------|----------------|--|--|--|--|
| l            | Step | Phase Time step [day] | End time [day] |  |  |  |  |
|              | 20   | 0 0,000               | 0,000          |  |  |  |  |
|              | 27   | 8 0,000               | 0,000          |  |  |  |  |
|              | 33   | 9 0,000               | 0,000          |  |  |  |  |
|              | 38   | 10 0,000              | 0,000          |  |  |  |  |
|              | 41   | 11 0,000              | 0,000          |  |  |  |  |
|              | 44   | 12 0,000              | 0,000          |  |  |  |  |
|              | 144  | 13 0,000              | 0,000          |  |  |  |  |
|              | 147  | 2 0,000               | 0,000          |  |  |  |  |
| Γ            | 247  | 1 0,000               | 0,000          |  |  |  |  |

# 1.1.5.4 Staged construction

| Step | Phase M Area | ΣM <sub>Area</sub> | M <sub>Stage</sub> | $\Sigma M$ stage |  |
|------|--------------|--------------------|--------------------|------------------|--|
| 20   | 0 1,000      | 0,830              | 0,222              | 1,000            |  |
| 27   | 8 0,420      | 0,869              | 0,111              | 1,000            |  |
| 33   | 9 0,538      | 0,925              | 0,187              | 1,000            |  |
| 38   | 10 0,625     | 0,974              | 0,056              | 1,000            |  |
| 41   | 11 0,670     | 0,994              | 0,318              | 1,000            |  |
| 44   | 12 0,795     | 1,000              | 0,146              | 1,000            |  |
| 144  | 13 -0,087    | 1,000              | 0,000              | 0,000            |  |
| 147  | 2 0,761      | 1,000              | 0,086              | 1,000            |  |
| 247  | 1 -0,252     | 1,000              | 0,000              | 0,000            |  |

## 1.1.5.5 Forces

| Step | Phase F <sub>x</sub> [kN/m] | F <sub>v</sub> [kN/m] |
|------|-----------------------------|-----------------------|
| 20   | 0 0,000                     | 0,000                 |
| 27   | 8 0,000                     | 0,000                 |
| 33   | 9 0,000                     | 0,000                 |
| 38   | 10 0,000                    | 0,000                 |
| 41   | 11 0,000                    | 0,000                 |
| 44   | 12 0,000                    | 0,000                 |
| 144  | 13 0,000                    | 0,000                 |
| 147  | 2 0,000                     | 0,000                 |
| 247  | 1 0,000                     | 0,000                 |

#### 1.1.5.6 Consolidation

| Step | Phase Rel. P Max [kN/m <sup>2</sup> | ] |
|------|-------------------------------------|---|
| 20   | 0 0,000                             |   |
| 27   | 8 0,000                             |   |
| 33   | 9 0,000                             |   |
| 38   | 10 0,000                            |   |
| 41   | 11 0,000                            |   |
| 44   | 12 0,000                            |   |
| 144  | 13 0,000                            |   |
| 147  | 2 0,000                             |   |
| 247  | 1 0,000                             |   |

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/20), Total displacements ux





## 2.1.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Total displacements ux













2.1.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Total displacements  $u_x$ 



2.1.1.1.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Total displacements ux



2.1.1.1.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Total displacements ux



2.1.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Total displacements  $u_x$ 



2.1.1.2.1 Calculation results, Initial phase [InitialPhase] (0/20), Total displacements uy





2.1.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Total displacements uy













2.1.1.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Total displacements uy



2.1.1.2.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Total displacements  $u_y$ 



2.1.1.2.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Total displacements uy



2.1.1.2.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Total displacements  $u_y$ 



2.1.2.1 Calculation results, Initial phase [InitialPhase] (0/20), Deformed mesh |u|



2.1.2.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Deformed mesh |u|



2.1.2.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Deformed mesh |u|



2.1.2.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Deformed mesh |u|



[m]

2.1.2.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Deformed mesh |u|



2.1.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Deformed mesh |u|







2.1.2.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Deformed mesh |u|



2.1.2.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Deformed mesh |u|



2.2.1.1.1 Calculation results, Initial phase [InitialPhase] (0/20), Steady state pore pressures psteady



2.2.1.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Steady state pore pressures psteady



2.2.1.1.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Steady state pore pressures psteady



2.2.1.1.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Steady state pore pressures psteady



2.2.1.1.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Steady state pore pressures psteady


2.2.1.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Steady state pore pressures psteady



2.2.1.1.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Steady state pore pressures psteady







## 2.2.1.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Steady state pore pressures psteady



2.2.2.1.1 Calculation results, Initial phase [InitialPhase] (0/20), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Cartesian effective stress o'xx



2.2.2.1.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Cartesian effective stress o'xx



2.2.2.1.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Cartesian effective stress  $\sigma'xx$ 



2.2.2.1.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Cartesian effective stress  $\sigma'xx$ 





2.2.2.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Cartesian effective stress  $\sigma'_{xx}$ 

2.2.2.1.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Cartesian effective stress o'xx



2.2.2.1.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Cartesian effective stress  $\sigma'_{xx}$ 



2.2.2.2.1 Calculation results, Initial phase [InitialPhase] (0/20), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Cartesian effective stress o'yy



2.2.2.2.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.2.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.2.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Cartesian effective stress  $\sigma'_{yy}$ 



2.2.3.1.1 Calculation results, Initial phase [InitialPhase] (0/20), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                       |  |
|------------------------------------------------------|-----------------------|--|
| Failure point                                        | Tension cut-off point |  |
| ▼ Cap point                                          | Cap + hardening point |  |
| A Hardening point                                    | V Liquefied point     |  |

2.2.3.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times)                                         |                                                                                                                                                                            |
|--------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure point      | □ Tension cut-off point                                                    |                                                                                                                                                                            |
| ▼Cap point         | Cap + hardening point                                                      |                                                                                                                                                                            |
| A Hardening point  | V Liquefied point                                                          |                                                                                                                                                                            |
|                    | Plastic point histo<br>■ Failure point<br>▼ Cap point<br>▲ Hardening point | Plastic point history Failure (scaled up 1,00 times)   ■ Failure point □ Tension cut-off point   ▼ Cap point ◆ Cap + hardening point   ▲ Hardening point ▼ Liquefied point |

2.2.3.1.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼ Cap point        | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼ Cap point        | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Plastic point history Failure



| Plastic point hist | ory Failure (scaled up 1,00 times) |  |
|--------------------|------------------------------------|--|
| Failure point      | □ Tension cut-off point            |  |
| ▼ Cap point        | Cap + hardening point              |  |
| A Hardening point  | V Liquefied point                  |  |

2.2.3.1.6 Calculation results, Phase\_5\_static [Phase\_5] (12/44), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.7 Calculation results, Phase\_6 FoS static [Phase\_6] (13/144), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.8 Calculation results, Phase\_8\_seismic [Phase\_8] (2/147), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |

2.2.3.1.9 Calculation results, Phase\_7 FoS seismic [Phase\_7] (1/247), Plastic point history Failure



| Plastic point history Failure (scaled up 1,00 times) |                         |  |
|------------------------------------------------------|-------------------------|--|
| Failure point                                        | □ Tension cut-off point |  |
| Cap point                                            | Cap + hardening point   |  |
| A Hardening point                                    | V Liquefied point       |  |





4.1.2 Calculation results, Phase\_1 [Phase\_1] (8/27), Deformed mesh |u|



4.1.3 Calculation results, Phase\_2 [Phase\_2] (9/33), Deformed mesh |u|



4.1.4 Calculation results, Phase\_3 [Phase\_3] (10/38), Deformed mesh |u|



[m]

4.1.5 Calculation results, Phase\_4 [Phase\_4] (11/41), Deformed mesh |u|



[m]
















## ANHANG 13 – ERGEBNISSE DER SLIDE SLU – ABSCHNITT 3 APPENDICE 13 – RISULTATI ANALISI SLIDE SLU – SEZIONE 3

## SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## **Table of Contents**

| Project Summary                                                  | 3  |    |
|------------------------------------------------------------------|----|----|
| General Settings                                                 | 4  |    |
| Design Standard                                                  | 5  |    |
| Analysis Options                                                 | 6  |    |
| Groundwater Analysis                                             | 7  |    |
| Random Numbers                                                   | 8  |    |
| Surface Options                                                  | 9  |    |
| Seismic Loading                                                  | 10 |    |
| Materials                                                        | 11 |    |
| Global Minimums                                                  | 13 |    |
| Method: bishop simplified                                        | 13 |    |
| Valid and Invalid Surfaces                                       | 14 |    |
| Method: bishop simplified                                        | 14 |    |
| Slice Data                                                       | 15 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2769 |    | 15 |
| Interslice Data                                                  | 16 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2769 |    | 16 |
| Entity Information                                               | 17 |    |
| Water Table17                                                    |    |    |
| External Boundary 17                                             |    |    |
| Material Boundary                                                | 19 |    |
|                                                                  |    |    |

## **Slide2 Analysis Information**

## **SLIDE - An Interactive Slope Stability Program**

**15. PROJECT SUMMARY** 

 Slide2 Modeler Version:
 9.023

 Compute Time:
 00h:00m:00.358s

 Date Created:
 16/11/2018, 18:41:47

### **16. GENERAL SETTINGS**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |
|                       |               |

### **17. DESIGN STANDARD**

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

### **18. ANALYSIS OPTIONS**

|                       | Slices Type:                  | Vertical          |  |  |  |
|-----------------------|-------------------------------|-------------------|--|--|--|
| Analysis Methods Used |                               |                   |  |  |  |
|                       |                               | Bishop simplified |  |  |  |
|                       | Number of slices:             | 25                |  |  |  |
|                       | Tolerance:                    | 0.005             |  |  |  |
|                       | Maximum number of iterations: | 50                |  |  |  |
|                       | Check malpha < 0.2:           | Yes               |  |  |  |
|                       | Initial trial value of FS:    | 1                 |  |  |  |
|                       | Steffensen Iteration:         | Yes               |  |  |  |
|                       |                               |                   |  |  |  |

#### **19. GROUNDWATER ANALYSIS**

| Groundwater Method:                   | Water Surfaces |
|---------------------------------------|----------------|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |
| Use negative pore pressure cutoff:    | Yes            |
| Maximum negative pore pressure [kPa]: | 0              |
| Advanced Groundwater Method:          | None           |
|                                       |                |

#### **20. RANDOM NUMBERS**

Pseudo-random Seed:

10116

Random Number Generation Method:

Park and Miller v.3

### **21. SURFACE OPTIONS**

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |
|                                     |                    |

### 22. SEISMIC LOADING

| Advanced seismic analysis:    | No |
|-------------------------------|----|
| Staged pseudostatic analysis: | No |

### 23. MATERIALS

| Α                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Roccia               |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 400                      |
| Friction Angle [deg] | 29.26                    |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |
|---------------------|--------------|
| Unit Weight [kN/m3] | 20           |
| Cohesion [kPa]      | 0            |

#### SLIDE - An Interactive Slope Stability Program

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |

### 24. GLOBAL MINIMUMS

#### 24.1 METHOD: BISHOP SIMPLIFIED

| FS                           | 1.276900         |
|------------------------------|------------------|
| Center:                      | 608.270, 738.346 |
| Radius:                      | 121.190          |
| Left Slip Surface Endpoint:  | 499.910, 684.076 |
| Right Slip Surface Endpoint: | 619.209, 617.650 |
| Left Slope Intercept:        | 499.910 684.076  |
| Right Slope Intercept:       | 619.209 618.000  |
| Resisting Moment:            | 2.64366e+06 kN-m |
| Driving Moment:              | 2.07038e+06 kN-m |
| Total Slice Area:            | 1659.07 m2       |
| Surface Horizontal Width:    | 119.299 m        |
| Surface Average Height:      | 13.9069 m        |
|                              |                  |

## **Global Minimum Support Data**

No Supports Present

25. VALID AND INVALID SURFACES

25.1 METHOD: BISHOP SIMPLIFIED

Number of Valid Surfaces: Number of Invalid Surfaces: 2693 0

### 26. SLICE DATA

### Global Minimum Query (bishop simplified) - Safety Factor: 1.2769

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 4.733        | 425.781        | -61.0825                           | А                | 36                        | 31.0834                            | 38.1526                  | 48.717                     | 21.095                            | 0                         | 21.095                                 | 90.1584                             | 90.1584                                  |
| 2               | 4.733        | 1114.71        | -56.7283                           | А                | 36                        | 31.0834                            | 81.1587                  | 103.632                    | 112.188                           | 0                         | 112.188                                | 235.873                             | 235.873                                  |
| 3               | 4.733        | 1443.14        | -52.8361                           | А                | 36                        | 31.0834                            | 106.196                  | 135.602                    | 165.22                            | 0                         | 165.22                                 | 305.311                             | 305.311                                  |
| 4               | 4.733        | 1673.9         | -49.2688                           | А                | 36                        | 31.0834                            | 126.181                  | 161.12                     | 207.549                           | 0                         | 207.549                                | 354.086                             | 354.086                                  |
| 5               | 4.733        | 1837.47        | -45.9447                           | А                | 36                        | 31.0834                            | 142.263                  | 181.655                    | 241.615                           | 0                         | 241.615                                | 388.647                             | 388.647                                  |
| 6               | 4.733        | 1945.77        | -42.8102                           | А                | 36                        | 31.0834                            | 154.784                  | 197.644                    | 268.137                           | 0                         | 268.137                                | 411.52                              | 411.52                                   |
| 7               | 4.733        | 2008.87        | -39.8279                           | А                | 36                        | 31.0834                            | 164.135                  | 209.584                    | 287.943                           | 0                         | 287.943                                | 424.831                             | 424.831                                  |
| 8               | 4.733        | 2232.53        | -36.9704                           | А                | 36                        | 31.0834                            | 185.244                  | 236.538                    | 332.654                           | 0                         | 332.654                                | 472.095                             | 472.095                                  |
| 9               | 4.733        | 2332.54        | -34.2167                           | А                | 36                        | 31.0834                            | 197.604                  | 252.321                    | 358.834                           | 0                         | 358.834                                | 493.21                              | 493.21                                   |
| 10              | 4.733        | 2284.23        | -31.5506                           | А                | 36                        | 31.0834                            | 198.629                  | 253.63                     | 361.006                           | 0                         | 361.006                                | 482.968                             | 482.968                                  |
| 11              | 4.733        | 2206.13        | -28.9588                           | А                | 36                        | 31.0834                            | 196.948                  | 251.483                    | 357.445                           | 0                         | 357.445                                | 466.429                             | 466.429                                  |
| 12              | 5.14255      | 2272.29        | -26.3236                           | Strato 1         | 4                         | 32.0066                            | 176.74                   | 225.679                    | 354.671                           | 0                         | 354.671                                | 442.112                             | 442.112                                  |
| 13              | 5.14255      | 2111.47        | -23.64                             | Strato 1         | 4                         | 32.0066                            | 168.18                   | 214.749                    | 337.183                           | 0                         | 337.183                                | 410.799                             | 410.799                                  |
| 14              | 5.14255      | 2040.05        | -21.0106                           | Strato 1         | 4                         | 32.0066                            | 166.163                  | 212.174                    | 333.065                           | 0                         | 333.065                                | 396.884                             | 396.884                                  |
| 15              | 5.14255      | 2055.47        | -18.4268                           | Strato 1         | 4                         | 32.0066                            | 170.977                  | 218.32                     | 342.896                           | 0                         | 342.896                                | 399.862                             | 399.862                                  |
| 16              | 5.14255      | 1814.86        | -15.8814                           | Strato 1         | 4                         | 32.0066                            | 154.433                  | 197.196                    | 309.099                           | 0                         | 309.099                                | 353.036                             | 353.036                                  |
| 17              | 5.14255      | 1533.52        | -13.3678                           | Strato 1         | 4                         | 32.0066                            | 133.603                  | 170.598                    | 266.544                           | 0                         | 266.544                                | 298.294                             | 298.294                                  |
| 18              | 5.14255      | 1224.47        | -10.8803                           | Strato 1         | 4                         | 32.0066                            | 109.417                  | 139.715                    | 217.133                           | 0                         | 217.133                                | 238.165                             | 238.165                                  |
| 19              | 5.14255      | 882.897        | -8.41332                           | Strato 1         | 4                         | 32.0066                            | 81.3012                  | 103.814                    | 159.694                           | 0                         | 159.694                                | 171.719                             | 171.719                                  |
| 20              | 5.14255      | 507.886        | -5.96203                           | Strato 1         | 4                         | 32.0066                            | 48.2403                  | 61.5981                    | 93.7379                           | 1.58519                   | 92.1527                                | 98.7759                             | 97.1907                                  |
| 21              | 5.00732      | 304.884        | -3.55365                           | Strato 2         | 0                         | 33.8726                            | 28.0753                  | 35.8493                    | 59.149                            | 5.74476                   | 53.4043                                | 60.8926                             | 55.1478                                  |
| 22              | 5.00732      | 298.947        | -1.18361                           | Strato 2         | 0                         | 33.8726                            | 27.0048                  | 34.4824                    | 59.1457                           | 7.77751                   | 51.3682                                | 59.7037                             | 51.9261                                  |
| 23              | 5.00732      | 78.9212        | 1.1844                             | Strato 2         | 0                         | 33.8726                            | 4.24325                  | 5.41821                    | 15.8486                           | 7.77717                   | 8.07146                                | 15.7609                             | 7.98373                                  |
| 24              | 5.00732      | 46.1104        | 3.55445                            | Strato 2         | 0                         | 33.8726                            | 1.88281                  | 2.40416                    | 9.3252                            | 5.74374                   | 3.58146                                | 9.20825                             | 3.46451                                  |
| 25              | 0.923317     | 3.93809        | 4.95956                            | Strato 1         | 4                         | 32.0066                            | 3.49607                  | 4.46413                    | 4.56767                           | 3.8251                    | 0.742565                               | 4.26428                             | 0.439185                                 |

### **27. INTERSLICE DATA**

### Global Minimum Query (bishop simplified) - Safety Factor: 1.2769

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] | Normal<br>Force [kN] |   | e Shear Force<br>[kN] | e Force<br>Angle [deg] |
|----|--------------|------------------|------------------------------|----------------------|---|-----------------------|------------------------|
| 1  |              | 499.91           | 684.076                      | 0                    | 0 | 0                     |                        |
| 2  |              | 504.643          | 675.508                      | 0.676959             | 0 | 0                     |                        |
| 3  |              | 509.376          | 668.295                      | 426.872              | 0 | 0                     |                        |
| 4  |              | 514.109          | 662.051                      | 957.267              | 0 | 0                     |                        |
| 5  |              | 518.842          | 656.555                      | 1502.58              | 0 | 0                     |                        |
| 6  |              | 523.575          | 651.663                      | 2013.09              | 0 | 0                     |                        |
| 7  |              | 528.308          | 647.279                      | 2458.2               | 0 | 0                     |                        |
| 8  |              | 533.041          | 643.331                      | 2820.18              | 0 | 0                     |                        |
| 9  |              | 537.774          | 639.769                      | 3131.09              | 0 | 0                     |                        |
| 10 |              | 542.507          | 636.55                       | 3353.45              | 0 | 0                     |                        |
| 11 |              | 547.24           | 633.644                      | 3465.17              | 0 | 0                     |                        |
| 12 |              | 551.973          | 631.025                      | 3471.87              | 0 | 0                     |                        |
| 13 |              | 557.115          | 628.481                      | 3467.95              | 0 | 0                     |                        |

#### SLIDE - An Interactive Slope Stability Program

#### giovedì 5 gennaio 2023

| 14 | 562.258 | 626.23  | 3364.56  | 0 | 0 |
|----|---------|---------|----------|---|---|
| 15 | 567.401 | 624.254 | 3170.36  | 0 | 0 |
| 16 | 572.543 | 622.541 | 2881.14  | 0 | 0 |
| 17 | 577.686 | 621.078 | 2541.47  | 0 | 0 |
| 18 | 582.828 | 619.856 | 2182.13  | 0 | 0 |
| 19 | 587.971 | 618.867 | 1835.69  | 0 | 0 |
| 20 | 593.113 | 618.107 | 1540.25  | 0 | 0 |
| 21 | 598.256 | 617.57  | 1343.23  | 0 | 0 |
| 22 | 603.263 | 617.259 | 1221.45  | 0 | 0 |
| 23 | 608.271 | 617.155 | 1092.73  | 0 | 0 |
| 24 | 613.278 | 617.259 | 1069.78  | 0 | 0 |
| 25 | 618.285 | 617.57  | 1057.06  | 0 | 0 |
| 26 | 619.209 | 617.65  | 0.600781 | 0 | 0 |

## **Discharge Sections**

### **28. ENTITY INFORMATION**

#### 28.1 WATER TABLE

| X   | Ŷ   |
|-----|-----|
| 150 | 618 |
| 900 | 618 |

#### 28.2 EXTERNAL BOUNDARY

| x       | Y       |
|---------|---------|
| 588.892 | 628.204 |
| 581.208 | 634.076 |
| 567.853 | 644.076 |
| 563.551 | 644.076 |
| 550.213 | 654.076 |
| 536.875 | 664.076 |
| 532.573 | 664.076 |
| 519.234 | 674.076 |
| 511.425 | 679.931 |

| 505.896 | 684.076 |
|---------|---------|
| 498.893 | 684.076 |
| 493.275 | 688.288 |
| 484.57  | 694.076 |
| 484.03  | 694.076 |
| 477.495 | 694.076 |
| 474.061 | 694.076 |
| 467.018 | 694.076 |
| 464.092 | 694.076 |
| 456.542 | 694.076 |
| 454.123 | 694.076 |
| 451.374 | 694.076 |
| 450.84  | 694.076 |
| 445.639 | 694.076 |
| 444.144 | 694.076 |
| 436.171 | 694.076 |
| 434.145 | 694.076 |
| 431.973 | 694.076 |
| 424.168 | 694.076 |
| 421.208 | 694.076 |
| 414.258 | 694.076 |
| 409.885 | 694.076 |
| 404.452 | 694.076 |
| 398.017 | 694.076 |
| 394.778 | 694.076 |
| 385.252 | 694.076 |
|         |         |

#### 384.194

| 376.09  | 694.076 |
|---------|---------|
| 367.005 | 694.076 |
| 356.117 | 697.977 |
| 348.554 | 700.954 |
| 345.124 | 702.316 |
| 341.027 | 704.076 |
| 333.717 | 704.076 |
| 331.768 | 704.076 |
| 323.795 | 704.076 |
| 317.881 | 699.848 |
| 309.815 | 694.076 |
| 295.835 | 684.076 |
| 288.061 | 678.543 |
| 285.773 | 676.896 |
| 281.858 | 674.076 |
| 277.235 | 670.745 |
| 273.26  | 667.882 |
| 268.038 | 671.492 |
| 261.605 | 673.139 |
| 254.783 | 680     |
| 248.92  | 683.267 |
| 240.758 | 686     |
| 227.706 | 688     |
| 225.009 | 690     |
| 219.437 | 690     |
| 205.281 | 694     |
| 199.776 | 694     |
| 198.375 | 693.175 |
| 193.874 | 694     |
| 190.253 | 696     |
| 177.678 | 698     |
| 163.025 | 700     |
| 163.025 | 629.5   |
| 163.025 | 617.567 |
| 163.025 | 614.567 |
| 163.025 | 607.567 |
| 163.025 | 595.567 |

| 163.025 | 520.734 |
|---------|---------|
| 800     | 520.734 |
| 800     | 595.567 |
| 800     | 607.567 |
| 800     | 614.567 |
| 800     | 617.571 |
| 800     | 669.745 |
| 788.562 | 668.248 |
| 779.808 | 667.509 |
| 774.305 | 666     |
| 762.733 | 662     |
| 748.786 | 657.179 |
| 735.074 | 652.44  |
| 728.921 | 650     |
| 725.517 | 648     |
| 711.827 | 644     |
| 693.082 | 638     |
| 673.746 | 632     |
| 659.261 | 627.488 |
| 647.965 | 624     |
| 636.524 | 620     |
| 634.642 | 618     |
| 631.651 | 617.752 |
| 618.822 | 617.647 |
| 608.828 | 618     |
| 605.988 | 620.817 |
| 605.018 | 620.598 |
| 598.661 | 620.369 |
| 595.397 | 622.986 |
|         |         |

#### 28.3 MATERIAL BOUNDARY

| 2       | x       | Y |
|---------|---------|---|
| 273.26  | 667.882 |   |
| 277.694 | 664.076 |   |
| 283.661 | 659.626 |   |
| 287.779 | 656.454 |   |

| 290.54  | 654.076 |
|---------|---------|
| 294.378 | 650.77  |
| 301.747 | 644.076 |
| 311.758 | 636.546 |
| 315.18  | 634.076 |
| 321.519 | 629.5   |
| 344.265 | 629.46  |
| 368.64  | 629     |
| 372.019 | 628.807 |
| 392.905 | 628.53  |
| 423.552 | 627.926 |
| 447.369 | 627.505 |
| 457.524 | 626.5   |
| 490.082 | 627.983 |
| 500.667 | 630     |
| 505.184 | 631     |
| 522.22  | 631.076 |
| 539.217 | 631.5   |
| 552.639 | 631     |
| 557.116 | 629.808 |
| 566.019 | 626.124 |
| 569.589 | 624.5   |
| 575.421 | 621.7   |
| 578.157 | 622.908 |
| 586.257 | 623     |
| 595.397 | 622.986 |

## Material Boundary

| x       | Y       |
|---------|---------|
| 163.025 | 617.567 |
| 634.642 | 617.57  |
| 800     | 617.571 |

## Material Boundary

| Í | X       | Ŷ       |
|---|---------|---------|
|   | 163.025 | 614.567 |
| : | 300     | 614.567 |

## **Material Boundary**

| Ī | X       | Y       |
|---|---------|---------|
|   | 163.025 | 607.567 |
|   | 800     | 607.567 |

## Material Boundary

| X       | Y       |
|---------|---------|
| 163.025 | 595.567 |
| 800     | 595.567 |

## **Material Boundary**

| x       | Y     |
|---------|-------|
| 163.025 | 629.5 |
| 321.519 | 629.5 |

## **Material Boundary**

| x       | Y       |
|---------|---------|
| 301.747 | 644.076 |
| 563.551 | 644.076 |

## Material Boundary

| x       | Ŷ       |
|---------|---------|
| 277.694 | 664.076 |
| 532.573 | 664.076 |

## **Material Boundary**

| X       | Y       |
|---------|---------|
| 295.835 | 684.076 |
| 498.893 | 684.076 |

## Material Boundary

| X       | Y       |
|---------|---------|
| 309.815 | 694.076 |
| 367.005 | 694.076 |

### **Material Boundary**

| x       | Y       |
|---------|---------|
| 315.18  | 634.076 |
| 581.208 | 634.076 |

## **Material Boundary**

|         | Х |         | Y |
|---------|---|---------|---|
| 290.54  |   | 654.076 |   |
| 550.213 |   | 654.076 |   |
|         |   |         |   |

### Material Boundary

| X | Ŷ |  |
|---|---|--|
|   |   |  |

### SLIDE - An Interactive Slope Stability Program

| 281.858 | 674.076 |
|---------|---------|
| 519.234 | 674.076 |

## Material Boundary

| _ |         |        |  |  |
|---|---------|--------|--|--|
|   | x       | Ŷ      |  |  |
|   | 634.642 | 617.57 |  |  |
|   | 634.642 | 618    |  |  |

## ANHANG 14 – ERGEBNISSE DER SLIDE SLV – ABSCHNITT 3 APPENDICE 14 – RISULTATI ANALISI SLIDE SLV – SEZIONE 3

## SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## **Table of Contents**

| Project Summary                                                  | 3  |    |
|------------------------------------------------------------------|----|----|
| General Settings                                                 | 4  |    |
| Design Standard                                                  | 5  |    |
| Analysis Options                                                 | 6  |    |
| Groundwater Analysis                                             | 7  |    |
| Random Numbers                                                   | 8  |    |
| Surface Options                                                  | 9  |    |
| Seismic Loading                                                  | 10 |    |
| Materials                                                        | 11 |    |
| Global Minimums                                                  | 13 |    |
| Method: bishop simplified                                        | 13 |    |
| Valid and Invalid Surfaces                                       | 14 |    |
| Method: bishop simplified                                        | 14 |    |
| Slice Data                                                       | 15 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2434 |    | 15 |
| Interslice Data                                                  | 16 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2434 |    | 16 |
| Entity Information                                               | 17 |    |
| Water Table17                                                    |    |    |
| External Boundary 17                                             |    |    |
| Material Boundary                                                | 19 |    |
|                                                                  |    |    |

## **Slide2 Analysis Information**

## **SLIDE - An Interactive Slope Stability Program**

## **Project Summary**

Slide2 Modeler Version:

Compute Time:

Date Created:

9.023 00h:00m:00.368s 16/11/2018, 18:41:47

## **General Settings**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |
|                       |               |

## **Design Standard**

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

## **Analysis Options**

| Slices Type:                  | Vertical              |  |
|-------------------------------|-----------------------|--|
|                               | Analysis Methods Used |  |
|                               | Bishop simplified     |  |
| Number of slices:             | 25                    |  |
| Tolerance:                    | 0.005                 |  |
| Maximum number of iterations: | 50                    |  |
| Check malpha < 0.2:           | Yes                   |  |
| Initial trial value of FS:    | 1                     |  |
| Steffensen Iteration:         | Yes                   |  |

## **Groundwater Analysis**

| Groundwater Method:                   | Water Surfaces |  |
|---------------------------------------|----------------|--|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |  |
| Use negative pore pressure cutoff:    | Yes            |  |
| Maximum negative pore pressure [kPa]: | 0              |  |
| Advanced Groundwater Method:          | None           |  |
|                                       |                |  |

## **Random Numbers**

Pseudo-random Seed:

Random Number Generation Method:

10116

Park and Miller v.3

## **Surface Options**

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |
|                                     |                    |

## **Seismic Loading**

| Advanced seismic analysis:             | No     |
|----------------------------------------|--------|
| Staged pseudostatic analysis:          | No     |
| Seismic Load Coefficient (Horizontal): | 0.013  |
| Seismic Load Coefficient (Vertical):   | 0.0065 |

# Materials

| A                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Roccia               |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 400                      |
| Friction Angle [deg] | 29.26                    |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |
|---------------------|--------------|
| Unit Weight [kN/m3] | 20           |
| Cohesion [kPa]      | 0            |
### SLIDE - An Interactive Slope Stability Program

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |

# **Global Minimums**

28.3.1 Method: bishop simplified

| FS                           | 1.243400         |
|------------------------------|------------------|
| Center:                      | 608.184, 738.717 |
| Radius:                      | 121.571          |
| Left Slip Surface Endpoint:  | 499.584, 684.076 |
| Right Slip Surface Endpoint: | 619.247, 617.650 |
| Left Slope Intercept:        | 499.584 684.076  |
| Right Slope Intercept:       | 619.247 618.000  |
| Resisting Moment:            | 2.67514e+06 kN-m |
| Driving Moment:              | 2.15148e+06 kN-m |
| Total Slice Area:            | 1675.74 m2       |
| Surface Horizontal Width:    | 119.664 m        |
| Surface Average Height:      | 14.0037 m        |
|                              |                  |

# **Global Minimum Support Data**

No Supports Present

# **Valid and Invalid Surfaces**

28.3.2 Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces: 2584 0

# **Slice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.2434

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 4.74326      | 425.929        | -60.9858                           | А                | 36                        | 31.0834                            | 38.8709                  | 48.3321                    | 20.4565                           | 0                         | 20.4565                                | 90.5405                             | 90.5405                                  |
| 2               | 4.74326      | 1131.45        | -56.6472                           | А                | 36                        | 31.0834                            | 83.7823                  | 104.175                    | 113.089                           | 0                         | 113.089                                | 240.38                              | 240.38                                   |
| 3               | 4.74326      | 1466.37        | -52.7662                           | А                | 36                        | 31.0834                            | 109.876                  | 136.62                     | 166.908                           | 0                         | 166.908                                | 311.488                             | 311.488                                  |
| 4               | 4.74326      | 1696.75        | -49.2075                           | А                | 36                        | 31.0834                            | 130.412                  | 162.154                    | 209.265                           | 0                         | 209.265                                | 360.388                             | 360.388                                  |
| 5               | 4.74326      | 1859.98        | -45.8903                           | А                | 36                        | 31.0834                            | 146.97                   | 182.742                    | 243.416                           | 0                         | 243.416                                | 395.026                             | 395.026                                  |
| 6               | 4.74326      | 1967.92        | -42.7617                           | А                | 36                        | 31.0834                            | 159.888                  | 198.805                    | 270.062                           | 0                         | 270.062                                | 417.922                             | 417.922                                  |
| 7               | 4.74326      | 2029.23        | -39.7844                           | А                | 36                        | 31.0834                            | 169.461                  | 210.708                    | 289.806                           | 0                         | 289.806                                | 430.917                             | 430.917                                  |
| 8               | 4.74326      | 2238.64        | -36.9313                           | А                | 36                        | 31.0834                            | 190.131                  | 236.409                    | 332.44                            | 0                         | 332.44                                 | 475.357                             | 475.357                                  |
| 9               | 4.74326      | 2353.97        | -34.1816                           | А                | 36                        | 31.0834                            | 204.084                  | 253.758                    | 361.219                           | 0                         | 361.219                                | 499.819                             | 499.819                                  |
| 10              | 4.74326      | 2305.06        | -31.5191                           | А                | 36                        | 31.0834                            | 205.219                  | 255.169                    | 363.559                           | 0                         | 363.559                                | 489.411                             | 489.411                                  |
| 11              | 4.74326      | 2226.29        | -28.9306                           | А                | 36                        | 31.0834                            | 203.566                  | 253.114                    | 360.149                           | 0                         | 360.149                                | 472.665                             | 472.665                                  |
| 12              | 5.14227      | 2288.23        | -26.3015                           | Strato 1         | 4                         | 32.0066                            | 182.993                  | 227.533                    | 357.636                           | 0                         | 357.636                                | 448.083                             | 448.083                                  |
| 13              | 5.14227      | 2127.03        | -23.627                            | Strato 1         | 4                         | 32.0066                            | 174.262                  | 216.677                    | 340.267                           | 0                         | 340.267                                | 416.498                             | 416.498                                  |
| 14              | 5.14227      | 2042.92        | -21.0061                           | Strato 1         | 4                         | 32.0066                            | 171.24                   | 212.92                     | 334.258                           | 0                         | 334.258                                | 400.012                             | 400.012                                  |
| 15              | 5.14227      | 2068.99        | -18.4306                           | Strato 1         | 4                         | 32.0066                            | 177.171                  | 220.295                    | 346.057                           | 0                         | 346.057                                | 405.099                             | 405.099                                  |
| 16              | 5.14227      | 1830.78        | -15.8932                           | Strato 1         | 4                         | 32.0066                            | 160.436                  | 199.486                    | 312.764                           | 0                         | 312.764                                | 358.445                             | 358.445                                  |
| 17              | 5.14227      | 1549.9         | -13.3875                           | Strato 1         | 4                         | 32.0066                            | 139.106                  | 172.964                    | 270.33                            | 0                         | 270.33                                 | 303.438                             | 303.438                                  |
| 18              | 5.14227      | 1241.3         | -10.9076                           | Strato 1         | 4                         | 32.0066                            | 114.301                  | 142.122                    | 220.984                           | 0                         | 220.984                                | 243.011                             | 243.011                                  |
| 19              | 5.14227      | 900.756        | -8.44832                           | Strato 1         | 4                         | 32.0066                            | 85.4745                  | 106.279                    | 163.639                           | 0                         | 163.639                                | 176.335                             | 176.335                                  |
| 20              | 5.14227      | 525.85         | -6.00464                           | Strato 1         | 4                         | 32.0066                            | 51.4533                  | 63.977                     | 97.5252                           | 1.56638                   | 95.9588                                | 102.937                             | 101.371                                  |
| 21              | 5.07214      | 310.357        | -3.58843                           | Strato 2         | 0                         | 33.8726                            | 29.1441                  | 36.2378                    | 59.7628                           | 5.77968                   | 53.9831                                | 61.5905                             | 55.8108                                  |
| 22              | 5.07214      | 307.433        | -1.19518                           | Strato 2         | 0                         | 33.8726                            | 28.3739                  | 35.2801                    | 60.4153                           | 7.85893                   | 52.5564                                | 61.0073                             | 53.1484                                  |
| 23              | 5.07214      | 81.8495        | 1.19598                            | Strato 2         | 0                         | 33.8726                            | 4.57506                  | 5.68863                    | 16.3329                           | 7.85858                   | 8.47432                                | 16.2374                             | 8.37881                                  |
| 24              | 5.07214      | 47.0478        | 3.58923                            | Strato 2         | 0                         | 33.8726                            | 1.97892                  | 2.46059                    | 9.44416                           | 5.77865                   | 3.66551                                | 9.32003                             | 3.54138                                  |
| 25              | 0.918688     | 3.90893        | 5.00421                            | Strato 1         | 4                         | 32.0066                            | 3.59444                  | 4.46933                    | 4.57442                           | 3.82352                   | 0.750897                               | 4.25968                             | 0.436158                                 |
| -               |              |                |                                    |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

## **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.2434

| Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] | Normal<br>Force [kN] | e Shear Force<br>[kN] | e Force<br>Angle [deg] |
|--------------|------------------|------------------------------|----------------------|-----------------------|------------------------|
| 1            | 499.584          | 684.076                      | 0                    | 0                     | 0                      |
| 2            | 504.327          | 675.524                      | -3.47109             | 0                     | 0                      |
| 3            | 509.07           | 668.317                      | 429.714              | 0                     | 0                      |
| 4            | 513.814          | 662.076                      | 970.535              | 0                     | 0                      |
| 5            | 518.557          | 656.579                      | 1525.67              | 0                     | 0                      |
| 6            | 523.3            | 651.686                      | 2045.37              | 0                     | 0                      |
| 7            | 528.043          | 647.3                        | 2498.89              | 0                     | 0                      |
| 8            | 532.787          | 643.35                       | 2867.97              | 0                     | 0                      |
| 9            | 537.53           | 639.785                      | 3182.57              | 0                     | 0                      |
| 10           | 542.273          | 636.563                      | 3410.95              | 0                     | 0                      |
| 11           | 547.017          | 633.654                      | 3527.27              | 0                     | 0                      |
| 12           | 551.76           | 631.033                      | 3537.07              | 0                     | 0                      |
| 13           | 556.902          | 628.491                      | 3536.95              | 0                     | 0                      |

SLIDE - An Interactive Slope Stability Program

| 14 | 562.044 | 626.242 | 3435.98  | 0 | 0 |
|----|---------|---------|----------|---|---|
| 15 | 567.187 | 624.267 | 3243.99  | 0 | 0 |
| 16 | 572.329 | 622.553 | 2954.93  | 0 | 0 |
| 17 | 577.471 | 621.089 | 2613.54  | 0 | 0 |
| 18 | 582.613 | 619.865 | 2250.85  | 0 | 0 |
| 19 | 587.756 | 618.874 | 1899.55  | 0 | 0 |
| 20 | 592.898 | 618.111 | 1597.72  | 0 | 0 |
| 21 | 598.04  | 617.57  | 1393.32  | 0 | 0 |
| 22 | 603.112 | 617.252 | 1268.88  | 0 | 0 |
| 23 | 608.185 | 617.146 | 1135.68  | 0 | 0 |
| 24 | 613.257 | 617.252 | 1111.7   | 0 | 0 |
| 25 | 618.329 | 617.57  | 1098.7   | 0 | 0 |
| 26 | 619.247 | 617.65  | 0.599684 | 0 | 0 |

# **Discharge Sections**

# **Entity Information**

## Water Table

| X   | Y   |
|-----|-----|
| 150 | 618 |
| 900 | 618 |

## **External Boundary**

| 588.892 628.204   581.208 634.076   567.853 644.076   563.551 644.076   550.213 654.076 |
|-----------------------------------------------------------------------------------------|
| 581.208 634.076   567.853 644.076   563.551 644.076   550.213 654.076                   |
| 567.853 644.076   563.551 644.076   550.213 654.076                                     |
| 563.551 644.076   550.213 654.076                                                       |
| 550.213 654.076                                                                         |
|                                                                                         |
| 536.875 664.076                                                                         |
| 532.573 664.076                                                                         |
| 519.234 674.076                                                                         |
| 511.425 679.931                                                                         |
| 505.896 684.076                                                                         |

| 498.893 | 684.076 |
|---------|---------|
| 493.275 | 688.288 |
| 484.57  | 694.076 |
| 484.03  | 694.076 |
| 477.495 | 694.076 |
| 474.061 | 694.076 |
| 467.018 | 694.076 |
| 464.092 | 694.076 |
| 456.542 | 694.076 |
| 454.123 | 694.076 |
| 451.374 | 694.076 |
| 450.84  | 694.076 |
| 445.639 | 694.076 |
| 444.144 | 694.076 |
| 436.171 | 694.076 |
| 434.145 | 694.076 |
| 431.973 | 694.076 |
| 424.168 | 694.076 |
| 421.208 | 694.076 |
| 414.258 | 694.076 |
| 409.885 | 694.076 |
| 404.452 | 694.076 |
| 398.017 | 694.076 |
| 394.778 | 694.076 |
| 385.252 | 694.076 |
|         |         |

### 384.194

| 376.09  | 694.076 |
|---------|---------|
| 367.005 | 694.076 |
| 356.117 | 697.977 |
| 348.554 | 700.954 |
| 345.124 | 702.316 |
| 341.027 | 704.076 |
| 333.717 | 704.076 |
| 331.768 | 704.076 |
| 323.795 | 704.076 |
| 317.881 | 699.848 |
| 309.815 | 694.076 |
| 295.835 | 684.076 |
| 288.061 | 678.543 |
| 285.773 | 676.896 |
| 281.858 | 674.076 |
| 277.235 | 670.745 |
| 273.26  | 667.882 |
| 268.038 | 671.492 |
| 261.605 | 673.139 |
| 254.783 | 680     |
| 248.92  | 683.267 |
| 240.758 | 686     |
| 227.706 | 688     |
| 225.009 | 690     |
| 219.437 | 690     |
| 205.281 | 694     |
| 199.776 | 694     |
| 198.375 | 693.175 |
| 193.874 | 694     |
| 190.253 | 696     |
| 177.678 | 698     |
| 163.025 | 700     |
| 163.025 | 629.5   |
| 163.025 | 617.567 |
| 163.025 | 614.567 |
| 163.025 | 607.567 |
| 163.025 | 595.567 |

| 163.025 | 520.734 |
|---------|---------|
| 800     | 520.734 |
| 800     | 595.567 |
| 800     | 607.567 |
| 800     | 614.567 |
| 800     | 617.571 |
| 800     | 669.745 |
| 788.562 | 668.248 |
| 779.808 | 667.509 |
| 774.305 | 666     |
| 762.733 | 662     |
| 748.786 | 657.179 |
| 735.074 | 652.44  |
| 728.921 | 650     |
| 725.517 | 648     |
| 711.827 | 644     |
| 693.082 | 638     |
| 673.746 | 632     |
| 659.261 | 627.488 |
| 647.965 | 624     |
| 636.524 | 620     |
| 634.642 | 618     |
| 631.651 | 617.752 |
| 618.822 | 617.647 |
| 608.828 | 618     |
| 605.988 | 620.817 |
| 605.018 | 620.598 |
| 598.661 | 620.369 |
| 595.397 | 622.986 |

| x       | Y       |
|---------|---------|
| 273.26  | 667.882 |
| 277.694 | 664.076 |
| 283.661 | 659.626 |
| 287.779 | 656.454 |

| 290.54  | 654.076 |
|---------|---------|
| 294.378 | 650.77  |
| 301.747 | 644.076 |
| 311.758 | 636.546 |
| 315.18  | 634.076 |
| 321.519 | 629.5   |
| 344.265 | 629.46  |
| 368.64  | 629     |
| 372.019 | 628.807 |
| 392.905 | 628.53  |
| 423.552 | 627.926 |
| 447.369 | 627.505 |
| 457.524 | 626.5   |
| 490.082 | 627.983 |
| 500.667 | 630     |
| 505.184 | 631     |
| 522.22  | 631.076 |
| 539.217 | 631.5   |
| 552.639 | 631     |
| 557.116 | 629.808 |
| 566.019 | 626.124 |
| 569.589 | 624.5   |
| 575.421 | 621.7   |
| 578.157 | 622.908 |
| 586.257 | 623     |
| 595.397 | 622.986 |

| x       | Y       |
|---------|---------|
| 163.025 | 617.567 |
| 634.642 | 617.57  |
| 800     | 617.571 |

## Material Boundary

| Í | X       | Ŷ       |
|---|---------|---------|
|   | 163.025 | 614.567 |
| : | 300     | 614.567 |

|         | Y       |
|---------|---------|
| 163.025 | 607.567 |
| 800     | 607.567 |

| X       | Y       |
|---------|---------|
| 163.025 | 595.567 |
| 800     | 595.567 |

### **Material Boundary**

| Х       |       | Y |
|---------|-------|---|
| 163.025 | 629.5 |   |
| 321.519 | 629.5 |   |

## **Material Boundary**

| x       | Y       |
|---------|---------|
| 301.747 | 644.076 |
| 563.551 | 644.076 |

## Material Boundary

| x       | Y       |
|---------|---------|
| 277.694 | 664.076 |
| 532.573 | 664.076 |

## **Material Boundary**

| X       | Y       |
|---------|---------|
| 295.835 | 684.076 |
| 498.893 | 684.076 |

## **Material Boundary**

| x       | Y       |
|---------|---------|
| 309.815 | 694.076 |
| 367.005 | 694.076 |

### **Material Boundary**

| x       | Y       |
|---------|---------|
| 315.18  | 634.076 |
| 581.208 | 634.076 |

## **Material Boundary**

|         | X |         | Y |
|---------|---|---------|---|
| 290.54  |   | 654.076 |   |
| 550.213 |   | 654.076 |   |
|         |   |         |   |

| x | Y |
|---|---|
|   |   |

### SLIDE - An Interactive Slope Stability Program

| 281.858 | 674.076 |
|---------|---------|
| 519.234 | 674.076 |

|  | x       | Ŷ      |
|--|---------|--------|
|  | 634.642 | 617.57 |
|  | 634.642 | 618    |

## ANHANG 15 – ERGEBNISSE DER SLIDE SLU "PIENA" – ABSCHNITT 3 APPENDICE 15 – RISULTATI ANALISI SLIDE SLU "PIENA" – SEZIONE 3

## SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## **Table of Contents**

| Project Summary                                                  | 3  |    |
|------------------------------------------------------------------|----|----|
| General Settings                                                 | 4  |    |
| Design Standard                                                  | 5  |    |
| Analysis Options                                                 | 6  |    |
| Groundwater Analysis                                             | 7  |    |
| Random Numbers                                                   | 8  |    |
| Surface Options                                                  | 9  |    |
| Seismic Loading                                                  | 10 |    |
| Materials                                                        | 11 |    |
| Global Minimums                                                  | 13 |    |
| Method: bishop simplified                                        | 13 |    |
| Valid and Invalid Surfaces                                       | 14 |    |
| Method: bishop simplified                                        | 14 |    |
| Slice Data                                                       | 15 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2472 |    | 15 |
| Interslice Data                                                  | 16 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.2472 |    | 16 |
| Entity Information                                               | 17 |    |
| Water Table17                                                    |    |    |
| External Boundary 17                                             |    |    |
| Material Boundary                                                | 19 |    |
|                                                                  |    |    |

# **Slide2 Analysis Information**

# **SLIDE - An Interactive Slope Stability Program**

# **Project Summary**

Slide2 Modeler Version:

Compute Time:

Date Created:

9.023 00h:00m:00.363s 16/11/2018, 18:41:47

# **General Settings**

| <br>Units of Measurement: | Metric Units  |
|---------------------------|---------------|
| Time Units:               | days          |
| Permeability Units:       | meters/second |
| Data Output:              | Standard      |
| Failure Direction:        | Left to Right |
|                           |               |

# **Design Standard**

| Selected Type:                     | Eurocode 7 (User Defined) |
|------------------------------------|---------------------------|
| Name:                              | User Defined 1            |
| Туре                               | Partial Factor            |
| Permanent Actions: Unfavourable    | 1                         |
| Permanent Actions: Favourable      | 1                         |
| Variable Actions: Unfavourable     | 1                         |
| Variable Actions: Favourable       | 1                         |
| Effective cohesion                 | 1.25                      |
| Coefficient of shearing resistance | 1.25                      |
| Undrained strength                 | 1                         |
| Weight density                     | 1                         |
| Shear strength (other models)      | 1                         |
| Earth resistance                   | 1                         |
| Tensile and plate strength         | 1                         |
| Shear strength                     | 1                         |
| Compressive strength               | 1                         |
| Bond strength                      | 1                         |
| Seismic Coefficient                | 1                         |

# **Analysis Options**

| Slices Type:                  | Vertical              |  |
|-------------------------------|-----------------------|--|
|                               | Analysis Methods Used |  |
|                               | Bishop simplified     |  |
| Number of slices:             | 25                    |  |
| Tolerance:                    | 0.005                 |  |
| Maximum number of iterations: | 50                    |  |
| Check malpha < 0.2:           | Yes                   |  |
| Initial trial value of FS:    | 1                     |  |
| Steffensen Iteration:         | Yes                   |  |

# **Groundwater Analysis**

| Groundwater Method:                   | Water Surfaces |  |
|---------------------------------------|----------------|--|
| Pore Fluid Unit Weight [kN/m3]:       | 9.81           |  |
| Use negative pore pressure cutoff:    | Yes            |  |
| Maximum negative pore pressure [kPa]: | 0              |  |
| Advanced Groundwater Method:          | None           |  |
|                                       |                |  |

# **Random Numbers**

Pseudo-random Seed:

Random Number Generation Method:

10116

Park and Miller v.3

# **Surface Options**

| Surface Type:                       | Circular           |
|-------------------------------------|--------------------|
| Search Method:                      | Auto Refine Search |
| Divisions along slope:              | 10                 |
| Circles per division:               | 10                 |
| Number of iterations:               | 10                 |
| Divisions to use in next iteration: | 50%                |
| Composite Surfaces:                 | Disabled           |
| Minimum Elevation:                  | Not Defined        |
| Minimum Depth:                      | Not Defined        |
| Minimum Area:                       | Not Defined        |
| Minimum Weight:                     | Not Defined        |
|                                     |                    |

# **Seismic Loading**

| Advanced seismic analysis:    | No |
|-------------------------------|----|
| Staged pseudostatic analysis: | No |

# Materials

| A                    |                          |
|----------------------|--------------------------|
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 21                       |
| Cohesion [kPa]       | 45                       |
| Friction Angle [deg] | 37                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Roccia               |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 400                      |
| Friction Angle [deg] | 29.26                    |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 1             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 5                        |
| Friction Angle [deg] | 38                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 2             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 40                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 3             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 42                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 4             |                          |
| Color                |                          |

| Strength Type       | Mohr-Coulomb |
|---------------------|--------------|
| Unit Weight [kN/m3] | 20           |
| Cohesion [kPa]      | 0            |

### SLIDE - An Interactive Slope Stability Program

| Friction Angle [deg] | 36                       |
|----------------------|--------------------------|
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |
| Strato 5             |                          |
| Color                |                          |
| Strength Type        | Mohr-Coulomb             |
| Unit Weight [kN/m3]  | 20                       |
| Cohesion [kPa]       | 0                        |
| Friction Angle [deg] | 36                       |
| Water Surface        | Water Table              |
| Hu Value             | Automatically Calculated |

# **Global Minimums**

28.3.3 Method: bishop simplified

| FS                           | 1.247200         |
|------------------------------|------------------|
| Center:                      | 608.695, 736.231 |
| Radius:                      | 119.667          |
| Left Slip Surface Endpoint:  | 500.993, 684.076 |
| Right Slip Surface Endpoint: | 625.131, 617.699 |
| Left Slope Intercept:        | 500.993 684.076  |
| Right Slope Intercept:       | 625.131 622.000  |
| Resisting Moment:            | 2.52069e+06 kN-m |
| Driving Moment:              | 2.02108e+06 kN-m |
| Total Slice Area:            | 1749.51 m2       |
| Surface Horizontal Width:    | 124.139 m        |
| Surface Average Height:      | 14.0932 m        |

# **Global Minimum Support Data**

No Supports Present

# **Valid and Invalid Surfaces**

28.3.4 Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces: 2900 0

# **Slice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.2472

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 5.06567      | 498.319        | -61.6099                           | А                | 36                        | 31.0834                            | 40.3849                  | 50.368                     | 23.8337                           | 0                         | 23.8337                                | 98.5547                             | 98.5547                                  |
| 2               | 5.06567      | 1194.5         | -56.8408                           | А                | 36                        | 31.0834                            | 82.1881                  | 102.505                    | 110.318                           | 0                         | 110.318                                | 236.11                              | 236.11                                   |
| 3               | 5.06567      | 1555.61        | -52.6249                           | А                | 36                        | 31.0834                            | 108.69                   | 135.558                    | 165.148                           | 0                         | 165.148                                | 307.437                             | 307.437                                  |
| 4               | 5.06567      | 1811.96        | -48.7858                           | А                | 36                        | 31.0834                            | 130.124                  | 162.291                    | 209.492                           | 0                         | 209.492                                | 358.058                             | 358.058                                  |
| 5               | 5.06567      | 1987.13        | -45.2229                           | А                | 36                        | 31.0834                            | 147.026                  | 183.371                    | 244.461                           | 0                         | 244.461                                | 392.636                             | 392.636                                  |
| 6               | 5.06567      | 2096.18        | -41.8721                           | А                | 36                        | 31.0834                            | 159.808                  | 199.313                    | 270.904                           | 0                         | 270.904                                | 414.152                             | 414.152                                  |
| 7               | 5.06567      | 2267.95        | -38.6894                           | А                | 36                        | 31.0834                            | 176.943                  | 220.683                    | 306.352                           | 0                         | 306.352                                | 448.057                             | 448.057                                  |
| 8               | 5.06567      | 2496.13        | -35.6431                           | А                | 36                        | 31.0834                            | 198.432                  | 247.485                    | 350.812                           | 0                         | 350.812                                | 493.101                             | 493.101                                  |
| 9               | 5.06567      | 2459.77        | -32.7093                           | А                | 36                        | 31.0834                            | 201.252                  | 251.001                    | 356.644                           | 0                         | 356.644                                | 485.892                             | 485.892                                  |
| 10              | 5.06567      | 2383.54        | -29.8693                           | А                | 36                        | 31.0834                            | 200.716                  | 250.333                    | 355.536                           | 0                         | 355.536                                | 470.81                              | 470.81                                   |
| 11              | 5.19605      | 2324.41        | -27.0735                           | Strato 1         | 4                         | 32.0066                            | 181.111                  | 225.882                    | 354.994                           | 0                         | 354.994                                | 447.568                             | 447.568                                  |
| 12              | 5.19605      | 2168.17        | -24.3113                           | Strato 1         | 4                         | 32.0066                            | 173.205                  | 216.021                    | 339.219                           | 0                         | 339.219                                | 417.465                             | 417.465                                  |
| 13              | 5.19605      | 2090.17        | -21.6081                           | Strato 1         | 4                         | 32.0066                            | 170.949                  | 213.207                    | 334.717                           | 0                         | 334.717                                | 402.429                             | 402.429                                  |
| 14              | 5.19605      | 2118.99        | -18.9547                           | Strato 1         | 4                         | 32.0066                            | 177.161                  | 220.955                    | 347.113                           | 0                         | 347.113                                | 407.957                             | 407.957                                  |
| 15              | 5.19605      | 1879.97        | -16.3429                           | Strato 1         | 4                         | 32.0066                            | 158.487                  | 197.665                    | 315.448                           | 5.59914                   | 309.849                                | 361.922                             | 356.323                                  |
| 16              | 5.19605      | 1597.21        | -13.7657                           | Strato 1         | 4                         | 32.0066                            | 131.471                  | 163.971                    | 275.26                            | 19.3166                   | 255.943                                | 307.469                             | 288.152                                  |
| 17              | 5.19605      | 1285.34        | -11.2167                           | Strato 1         | 4                         | 32.0066                            | 101.746                  | 126.897                    | 227.241                           | 30.6148                   | 196.627                                | 247.418                             | 216.803                                  |
| 18              | 5.19605      | 939.396        | -8.68995                           | Strato 1         | 4                         | 32.0066                            | 68.7304                  | 85.7206                    | 170.311                           | 39.5644                   | 130.747                                | 180.816                             | 141.252                                  |
| 19              | 5.15952      | 568.651        | -6.18897                           | Strato 2         | 0                         | 33.8726                            | 32.5564                  | 40.6044                    | 106.692                           | 46.2041                   | 60.4882                                | 110.223                             | 64.0186                                  |
| 20              | 5.15952      | 451.111        | -3.70859                           | Strato 2         | 0                         | 33.8726                            | 19.1636                  | 23.9008                    | 86.1936                           | 50.5888                   | 35.6048                                | 87.4358                             | 36.847                                   |
| 21              | 5.15952      | 451.099        | -1.23517                           | Strato 2         | 0                         | 33.8726                            | 18.4392                  | 22.9974                    | 87.0338                           | 52.7749                   | 34.2589                                | 87.4314                             | 34.6565                                  |
| 22              | 5.15952      | 340.376        | 1.23595                            | Strato 2         | 0                         | 33.8726                            | 7.1857                   | 8.96201                    | 66.1251                           | 52.7745                   | 13.3506                                | 65.97                               | 13.1955                                  |
| 23              | 5.15952      | 307.713        | 3.70938                            | Strato 2         | 0                         | 33.8726                            | 5.04781                  | 6.29563                    | 59.9663                           | 50.5878                   | 9.37853                                | 59.6391                             | 9.05127                                  |
| 24              | 5.15952      | 258.338        | 6.18976                            | Strato 2         | 0                         | 33.8726                            | 2.21048                  | 2.75691                    | 50.3093                           | 46.2024                   | 4.10691                                | 50.0696                             | 3.86718                                  |
| 25              | 0.956401     | 41.5493        | 7.6633                             | Strato 1         | 4                         | 32.0066                            | 3.7699                   | 4.70182                    | 43.9493                           | 42.8265                   | 1.12284                                | 43.4421                             | 0.615591                                 |
| -               | -            |                | <b>.</b> .                         |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

## **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.2472

|    | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] |         | Normal<br>Force [kN] |   | e Shear Force<br>[kN] |   | e Force<br>Angle [deg] |
|----|--------------|------------------|------------------------------|---------|----------------------|---|-----------------------|---|------------------------|
| 1  |              | 500.993          | 684.076                      | 0       |                      | 0 |                       | 0 |                        |
| 2  |              | 506.058          | 674.703                      | 19.3089 |                      | 0 |                       | 0 |                        |
| 3  |              | 511.124          | 666.95                       | 459.315 |                      | 0 |                       | 0 |                        |
| 4  |              | 516.19           | 660.318                      | 1005.27 |                      | 0 |                       | 0 |                        |
| 5  |              | 521.255          | 654.535                      | 1559.33 |                      | 0 |                       | 0 |                        |
| 6  |              | 526.321          | 649.429                      | 2064.4  |                      | 0 |                       | 0 |                        |
| 7  |              | 531.387          | 644.889                      | 2486.95 |                      | 0 |                       | 0 |                        |
| 8  |              | 536.452          | 640.832                      | 2835.64 |                      | 0 |                       | 0 |                        |
| 9  |              | 541.518          | 637.199                      | 3107.21 |                      | 0 |                       | 0 |                        |
| 10 |              | 546.584          | 633.946                      | 3250.49 |                      | 0 |                       | 0 |                        |
| 11 |              | 551.649          | 631.037                      | 3270.57 |                      | 0 |                       | 0 |                        |
| 12 |              | 556.845          | 628.381                      | 3274.66 |                      | 0 |                       | 0 |                        |
| 13 |              | 562.041          | 626.034                      | 3173.14 |                      | 0 |                       | 0 |                        |

SLIDE - An Interactive Slope Stability Program

| 14 | 567.238 | 623.975 | 2975.94 | 0 | 0 |
|----|---------|---------|---------|---|---|
| 15 | 572.434 | 622.191 | 2677.1  | 0 | 0 |
| 16 | 577.63  | 620.667 | 2336.25 | 0 | 0 |
| 17 | 582.826 | 619.394 | 2005.19 | 0 | 0 |
| 18 | 588.022 | 618.364 | 1711.96 | 0 | 0 |
| 19 | 593.218 | 617.57  | 1490.96 | 0 | 0 |
| 20 | 598.377 | 617.01  | 1373.43 | 0 | 0 |
| 21 | 603.537 | 616.676 | 1302.9  | 0 | 0 |
| 22 | 608.696 | 616.565 | 1154.62 | 0 | 0 |
| 23 | 613.856 | 616.676 | 1098.11 | 0 | 0 |
| 24 | 619.015 | 617.01  | 1044.8  | 0 | 0 |
| 25 | 624.175 | 617.57  | 1007.07 | 0 | 0 |
| 26 | 625.131 | 617.699 | 90.7513 | 0 | 0 |

# **Discharge Sections**

# **Entity Information**

## Water Table

| X   | Y   |
|-----|-----|
| 150 | 622 |
| 900 | 622 |

## **External Boundary**

| X       | Y       |
|---------|---------|
| 588.892 | 628.204 |
| 581.208 | 634.076 |
| 567.853 | 644.076 |
| 563.551 | 644.076 |
| 550.213 | 654.076 |
| 536.875 | 664.076 |
| 532.573 | 664.076 |
| 519.234 | 674.076 |
| 511.425 | 679.931 |
| 505.896 | 684.076 |
|         |         |

| 498.893 | 684.076 |
|---------|---------|
| 493.275 | 688.288 |
| 484.57  | 694.076 |
| 484.03  | 694.076 |
| 477.495 | 694.076 |
| 474.061 | 694.076 |
| 467.018 | 694.076 |
| 464.092 | 694.076 |
| 456.542 | 694.076 |
| 454.123 | 694.076 |
| 451.374 | 694.076 |
| 450.84  | 694.076 |
| 445.639 | 694.076 |
| 444.144 | 694.076 |
| 436.171 | 694.076 |
| 434.145 | 694.076 |
| 431.973 | 694.076 |
| 424.168 | 694.076 |
| 421.208 | 694.076 |
| 414.258 | 694.076 |
| 409.885 | 694.076 |
| 404.452 | 694.076 |
| 398.017 | 694.076 |
| 394.778 | 694.076 |
| 385.252 | 694.076 |
| •       |         |

### 384.194

| 376.09  | 694.076 |
|---------|---------|
| 367.005 | 694.076 |
| 356.117 | 697.977 |
| 348.554 | 700.954 |
| 345.124 | 702.316 |
| 341.027 | 704.076 |
| 333.717 | 704.076 |
| 331.768 | 704.076 |
| 323.795 | 704.076 |
| 317.881 | 699.848 |
| 309.815 | 694.076 |
| 295.835 | 684.076 |
| 288.061 | 678.543 |
| 285.773 | 676.896 |
| 281.858 | 674.076 |
| 277.235 | 670.745 |
| 273.26  | 667.882 |
| 268.038 | 671.492 |
| 261.605 | 673.139 |
| 254.783 | 680     |
| 248.92  | 683.267 |
| 240.758 | 686     |
| 227.706 | 688     |
| 225.009 | 690     |
| 219.437 | 690     |
| 205.281 | 694     |
| 199.776 | 694     |
| 198.375 | 693.175 |
| 193.874 | 694     |
| 190.253 | 696     |
| 177.678 | 698     |
| 163.025 | 700     |
| 163.025 | 629.5   |
| 163.025 | 617.567 |
| 163.025 | 614.567 |
| 163.025 | 607.567 |
| 163.025 | 595.567 |

| 163.025 | 520.734 |
|---------|---------|
| 800     | 520.734 |
| 800     | 595.567 |
| 800     | 607.567 |
| 800     | 614.567 |
| 800     | 617.571 |
| 800     | 669.745 |
| 788.562 | 668.248 |
| 779.808 | 667.509 |
| 774.305 | 666     |
| 762.733 | 662     |
| 748.786 | 657.179 |
| 735.074 | 652.44  |
| 728.921 | 650     |
| 725.517 | 648     |
| 711.827 | 644     |
| 693.082 | 638     |
| 673.746 | 632     |
| 659.261 | 627.488 |
| 647.965 | 624     |
| 636.524 | 620     |
| 634.642 | 618     |
| 631.651 | 617.752 |
| 618.822 | 617.647 |
| 608.828 | 618     |
| 605.988 | 620.817 |
| 605.018 | 620.598 |
| 598.661 | 620.369 |
| 595.397 | 622.986 |

| x       | Y       |
|---------|---------|
| 273.26  | 667.882 |
| 277.694 | 664.076 |
| 283.661 | 659.626 |
| 287.779 | 656.454 |

| 290.54  | 654.076 |
|---------|---------|
| 294.378 | 650.77  |
| 301.747 | 644.076 |
| 311.758 | 636.546 |
| 315.18  | 634.076 |
| 321.519 | 629.5   |
| 344.265 | 629.46  |
| 368.64  | 629     |
| 372.019 | 628.807 |
| 392.905 | 628.53  |
| 423.552 | 627.926 |
| 447.369 | 627.505 |
| 457.524 | 626.5   |
| 490.082 | 627.983 |
| 500.667 | 630     |
| 505.184 | 631     |
| 522.22  | 631.076 |
| 539.217 | 631.5   |
| 552.639 | 631     |
| 557.116 | 629.808 |
| 566.019 | 626.124 |
| 569.589 | 624.5   |
| 575.421 | 621.7   |
| 578.157 | 622.908 |
| 586.257 | 623     |
| 595.397 | 622.986 |
|         |         |

| x       | Y       |
|---------|---------|
| 163.025 | 617.567 |
| 634.642 | 617.57  |
| 800     | 617.571 |

## Material Boundary

| Í | X       | Ŷ       |
|---|---------|---------|
|   | 163.025 | 614.567 |
| : | 300     | 614.567 |

| Ī | X       | Y       |
|---|---------|---------|
|   | 163.025 | 607.567 |
|   | 800     | 607.567 |

| X       | Y       |
|---------|---------|
| 163.025 | 595.567 |
| 800     | 595.567 |

### **Material Boundary**

| x       | Y     |
|---------|-------|
| 163.025 | 629.5 |
| 321.519 | 629.5 |

## **Material Boundary**

| x       | Y       |
|---------|---------|
| 301.747 | 644.076 |
| 563.551 | 644.076 |

### Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 277.694 |   | 664.076 |   |
| 532.573 |   | 664.076 |   |

## **Material Boundary**

| X       | Y       |
|---------|---------|
| 295.835 | 684.076 |
| 498.893 | 684.076 |

## **Material Boundary**

| X       |         | Y |
|---------|---------|---|
| 309.815 | 694.076 |   |
| 367.005 | 694.076 |   |

### **Material Boundary**

| x       | Y       |
|---------|---------|
| 315.18  | 634.076 |
| 581.208 | 634.076 |

## **Material Boundary**

|         | X | Ŷ       |
|---------|---|---------|
| 290.54  |   | 654.076 |
| 550.213 |   | 654.076 |
|         |   |         |

| x | Y |
|---|---|
|   |   |

### SLIDE - An Interactive Slope Stability Program

| 281.858 | 674.076 |
|---------|---------|
| 519.234 | 674.076 |

|  | x       | Ŷ      |  |
|--|---------|--------|--|
|  | 634.642 | 617.57 |  |
|  | 634.642 | 618    |  |

## ANHANG 16 – ERGEBNISSE DER SLIDE SLU "SVASO RAPIDO" – ABSCHNITT 3 APPENDICE 16 – RISULTATI ANALISI SLIDE SLU "SVASO RAPIDO" – SEZIONE 3

## SLIDE - An Interactive Slope Stability Program Date Created: 16/11/2018, 18:41:47 Software Version: 9.023

## **Table of Contents**

| Project Summary                                                   | 3  |    |
|-------------------------------------------------------------------|----|----|
| General Settings                                                  | 4  |    |
| Design Standard                                                   | 5  |    |
| Analysis Options                                                  | 6  |    |
| Groundwater Analysis                                              | 7  |    |
| Random Numbers                                                    | 8  |    |
| Surface Options                                                   |    |    |
| Seismic Loading                                                   | 10 |    |
| Materials                                                         | 11 |    |
| Global Minimums                                                   |    |    |
| Method: bishop simplified                                         | 14 |    |
| Valid and Invalid Surfaces                                        | 15 |    |
| Method: bishop simplified                                         | 15 |    |
| Slice Data                                                        | 16 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.26769 |    | 16 |
| Interslice Data                                                   | 17 |    |
| Global Minimum Query (bishop simplified) - Safety Factor: 1.26769 |    | 17 |
| Entity Information                                                | 18 |    |
| Piezoline                                                         |    |    |
| External Boundary 20                                              |    |    |
| Material Boundary                                                 | 22 |    |
|                                                                   |    |    |

# **Slide2 Analysis Information**

# **SLIDE - An Interactive Slope Stability Program**

# **Project Summary**

Slide2 Modeler Version:

Compute Time:

Date Created:

9.023 00h:00m:00.408s 16/11/2018, 18:41:47
### **General Settings**

| Units of Measurement: | Metric Units  |
|-----------------------|---------------|
| Time Units:           | days          |
| Permeability Units:   | meters/second |
| Data Output:          | Standard      |
| Failure Direction:    | Left to Right |
|                       |               |

### **Design Standard**

| Selected Type:                     | Eurocode 7 (User Defined) |  |
|------------------------------------|---------------------------|--|
| Name:                              | User Defined 1            |  |
| Туре                               | Partial Factor            |  |
| Permanent Actions: Unfavourable    | 1                         |  |
| Permanent Actions: Favourable      | 1                         |  |
| Variable Actions: Unfavourable     | 1                         |  |
| Variable Actions: Favourable       | 1                         |  |
| Effective cohesion                 | 1.25                      |  |
| Coefficient of shearing resistance | 1.25                      |  |
| Undrained strength                 | 1                         |  |
| Weight density                     | 1                         |  |
| Shear strength (other models)      | 1                         |  |
| Earth resistance                   | 1                         |  |
| Tensile and plate strength         | 1                         |  |
| Shear strength                     | 1                         |  |
| Compressive strength               | 1                         |  |
| Bond strength                      | 1                         |  |
| Seismic Coefficient                | 1                         |  |

# **Analysis Options**

| Slices Type:                  | Vertical              |
|-------------------------------|-----------------------|
|                               | Analysis Methods Used |
|                               | Bishop simplified     |
| Number of slices:             | 25                    |
| Tolerance:                    | 0.005                 |
| Maximum number of iterations: | 50                    |
| Check malpha < 0.2:           | Yes                   |
| Initial trial value of FS:    | 1                     |
| Steffensen Iteration:         | Yes                   |

# **Groundwater Analysis**

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [kN/m3]:    | 9.81              |
| Tolerance:                         | 1e-06             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 1897              |
| Number of Nodes:                   | 1074              |

#### **Random Numbers**

Pseudo-random Seed:

Random Number Generation Method:

10116

Park and Miller v.3

# **Surface Options**

| Circular           |
|--------------------|
| Auto Refine Search |
| 10                 |
| 10                 |
| 10                 |
| 50%                |
| Disabled           |
| Not Defined        |
| Not Defined        |
| Not Defined        |
| Not Defined        |
|                    |

# **Seismic Loading**

| Advanced seismic analysis:    | No |
|-------------------------------|----|
| Staged pseudostatic analysis: | No |

### Materials

| Α                                           |                            |
|---------------------------------------------|----------------------------|
| Color                                       |                            |
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 21                         |
| Cohesion [kPa]                              | 45                         |
| Friction Angle [deg]                        | 37                         |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 0.0005                     |
| K2/K1                                       | 1                          |
| K Angle [deg]                               | 0                          |
| Groundwater Model                           | van Genuchten              |
| GW Model Properties                         | Alpha: 0n: 2.68m: 0.626866 |
| Unsat. Shear Strength Phi b [deg]           | 0                          |
| Unsat. Shear Strength Air Entry Value [kPa] | 0                          |
| Roccia                                      |                            |
| Calar                                       |                            |
| Color                                       |                            |
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 20                         |
| Cohesion [kPa]                              | 400                        |
| Friction Angle [deg]                        | 29.26                      |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 3.91e-05                   |
| K2/K1                                       | 1                          |
| K Angle [deg]                               | 0                          |
| Groundwater Model                           | van Genuchten              |
| GW Model Properties                         | Alpha: 0n: 2.68m: 0.626866 |
| Unsat. Shear Strength Phi b [deg]           | 0                          |
| Unsat. Shear Strength Air Entry Value [kPa] | 0                          |
| Strato 1                                    |                            |
| Color                                       |                            |
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 20                         |
| Cohesion [kPa]                              | 5                          |
| Friction Angle [deg]                        | 38                         |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 3.91e-05                   |
| К2/К1                                       | 1                          |
| K Angle [deg]                               | 0                          |
| Groundwater Model                           | van Genuchten              |
| GW Model Properties                         | Alpha: 0n: 2.68m: 0.626866 |
| Unsat. Shear Strength Phi b [deg]           | 0                          |
| Unsat. Shear Strength Air Entry Value [kPa] | 0                          |

Strato 2

| Color                                       |                            |
|---------------------------------------------|----------------------------|
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 20                         |
| Cohesion [kPa]                              | 0                          |
| Friction Angle [deg]                        | 40                         |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 3.91e-05                   |
| K2/K1                                       | 1                          |
| K Angle [deg]                               | 0                          |
| Groundwater Model                           | van Genuchten              |
| GW Model Properties                         | Alpha: 0n: 2.68m: 0.626866 |
| Unsat. Shear Strength Phi b [deg]           | 0                          |
| Unsat. Shear Strength Air Entry Value [kPa] | 0                          |
| Strato 3                                    |                            |
| Color                                       |                            |
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 20                         |
| Cohesion [kPa]                              | 0                          |
| Friction Angle [deg]                        | 42                         |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 3.91e-05                   |
| K2/K1                                       | 1                          |
| K Angle [deg]                               | 0                          |
| Groundwater Model                           | van Genuchten              |
| GW Model Properties                         | Alpha: 0n: 2.68m: 0.626866 |
| Unsat. Shear Strength Phi b [deg]           | 0                          |
| Unsat. Shear Strength Air Entry Value [kPa] | 0                          |
| Strato 4                                    |                            |
| Color                                       |                            |
| Strength Type                               | Mohr-Coulomb               |
| Unit Weight [kN/m3]                         | 20                         |
| Cohesion [kPa]                              | 0                          |
| Friction Angle [deg]                        | 36                         |
| Unsaturated Shear Strength Angle [deg]      | 0                          |
| Air Entry Value [kPa]                       | 0                          |
| Ks [meters/second]                          | 3.91e-05                   |
| K2/K1                                       | 1                          |

| Partecipazioni<br>Italia               | DETAILPLANUNG / PROGETTO DI DETTAGLIO         Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/         Verifica di stabilità e assestamenti Hinterrigger |                                |                      |                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>Ghella</b>                          | Project                                                                                                                                                                  | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |
| K Angle [deg]                          |                                                                                                                                                                          | 0                              |                      |                  |
| Groundwater Model                      |                                                                                                                                                                          | van Genuchten                  |                      |                  |
| GW Model Properties                    |                                                                                                                                                                          | Alpha: 0n: 2.68m               | 1: 0.626866          |                  |
| Unsat. Shear Strength Phi              | b [deg]                                                                                                                                                                  | 0                              |                      |                  |
| Unsat. Shear Strength Air              | Entry Value [kPa]                                                                                                                                                        | 0                              |                      |                  |
| Strato 5                               |                                                                                                                                                                          |                                |                      |                  |
| Color                                  |                                                                                                                                                                          |                                |                      |                  |
| Strength Type                          |                                                                                                                                                                          | Mohr-Coulomb                   |                      |                  |
| Unit Weight [kN/m3]                    |                                                                                                                                                                          | 20                             |                      |                  |
| Cohesion [kPa]                         |                                                                                                                                                                          | 0                              |                      |                  |
| Friction Angle [deg]                   |                                                                                                                                                                          | 36                             |                      |                  |
| Unsaturated Shear Strength Angle [deg] |                                                                                                                                                                          | 0                              |                      |                  |
| Air Entry Value [kPa]                  |                                                                                                                                                                          | 0                              |                      |                  |
| Ks [meters/second]                     |                                                                                                                                                                          | 3.91e-05                       |                      |                  |
| K2/K1                                  |                                                                                                                                                                          | 1                              |                      |                  |
| K Angle [deg]                          |                                                                                                                                                                          | 0                              |                      |                  |
| Groundwater Model                      |                                                                                                                                                                          | van Genuchten                  |                      |                  |
| GW Model Properties                    |                                                                                                                                                                          | Alpha: 0n: 2.68m               | 1: 0.626866          |                  |
| Unsat. Shear Strength Phi              | b [deg]                                                                                                                                                                  | 0                              |                      |                  |
| Unsat. Shear Strength Air              | Entry Value [kPa]                                                                                                                                                        | 0                              |                      |                  |

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                  |                                                                                         |         | 01.10            |
|-----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|---------|------------------|
| Italia          | Nachweis der Standfesti<br>Verifica di stabilità e ass | itandfestigkeit undSetzungsberechnung Hinterrigger/<br>lità e assestamenti Hinterrigger |         | SWS              |
| <b>J</b> Ghella | Project                                                | Document ID                                                                             | Version | Technical report |
| - Eller         | 110,000                                                | KTB_B0130_51058                                                                         | 00      |                  |

### **Global Minimums**

#### 28.3.5 Method: bishop simplified

| FS                           | 1.267690         |
|------------------------------|------------------|
| Center:                      | 608.234, 737.961 |
| Radius:                      | 120.863          |
| Left Slip Surface Endpoint:  | 500.048, 684.076 |
| Right Slip Surface Endpoint: | 619.825, 617.655 |
| Left Slope Intercept:        | 500.048 684.076  |
| Right Slope Intercept:       | 619.825 618.000  |
| Resisting Moment:            | 2.61717e+06 kN-m |
| Driving Moment:              | 2.06452e+06 kN-m |
| Total Slice Area:            | 1660.01 m2       |
| Surface Horizontal Width:    | 119.777 m        |
| Surface Average Height:      | 13.8592 m        |

| Partecipazioni | DETAILPLANUNG /                                       | PROGETTO DI DETTAGLIO                                                        |                      |                  |
|----------------|-------------------------------------------------------|------------------------------------------------------------------------------|----------------------|------------------|
| Italia         | Nachweis der Standfest<br>Verifica di stabilità e ass | lfestigkeit undSetzungsberechnung Hinterrigger/<br>assestamenti Hinterrigger |                      | SWS              |
| <b>Ghella</b>  | Project                                               | Document ID<br>KTB_B0130_51058                                               | Version<br><b>00</b> | Technical report |

### **Global Minimum Support Data**

No Supports Present

### **Valid and Invalid Surfaces**

28.3.6 Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces: 2111 0

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO<br>Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |                      | SWS              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>J</b> Ghella          | Project                                                                                                                                                        | Document ID<br>KTB B0130 51058 | Version<br><b>00</b> | Technical report |

#### **Slice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.26769

| Slice<br>Number | Width<br>[m] | Weight<br>[kN] | Angle of<br>Slice<br>Base<br>[deg] | Base<br>Material | Base<br>Cohesion<br>[kPa] | Base<br>Friction<br>Angle<br>[deg] | Shear<br>Stress<br>[kPa] | Shear<br>Strength<br>[kPa] | Base<br>Normal<br>Stress<br>[kPa] | Pore<br>Pressure<br>[kPa] | Effective<br>Normal<br>Stress<br>[kPa] | Base<br>Vertical<br>Stress<br>[kPa] | Effective<br>Vertical<br>Stress<br>[kPa] |
|-----------------|--------------|----------------|------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 1               | 4.71421      | 424.508        | -61.2027                           | А                | 36                        | 31.0834                            | 38.2341                  | 48.469                     | 20.6836                           | -585.735                  | 20.6836                                | 90.2388                             | 90.2388                                  |
| 2               | 4.71421      | 1105.22        | -56.8392                           | А                | 36                        | 31.0834                            | 81.0563                  | 102.754                    | 110.732                           | -508.415                  | 110.732                                | 234.784                             | 234.784                                  |
| 3               | 4.71421      | 1431.59        | -52.9414                           | А                | 36                        | 31.0834                            | 106.148                  | 134.562                    | 163.496                           | -442.563                  | 163.496                                | 304.059                             | 304.059                                  |
| 4               | 4.71421      | 1662.67        | -49.3706                           | А                | 36                        | 31.0834                            | 126.306                  | 160.117                    | 205.885                           | -385.152                  | 205.885                                | 353.096                             | 353.096                                  |
| 5               | 4.71421      | 1826.77        | -46.0443                           | А                | 36                        | 31.0834                            | 142.556                  | 180.717                    | 240.057                           | -334.394                  | 240.057                                | 387.906                             | 387.906                                  |
| 6               | 4.71421      | 1935.8         | -42.9085                           | А                | 36                        | 31.0834                            | 155.238                  | 196.794                    | 266.725                           | -289.088                  | 266.725                                | 411.024                             | 411.024                                  |
| 7               | 4.71421      | 1999.87        | -39.9255                           | А                | 36                        | 31.0834                            | 164.748                  | 208.849                    | 286.724                           | -248.423                  | 286.724                                | 424.599                             | 424.599                                  |
| 8               | 4.71421      | 2223.76        | -37.0678                           | А                | 36                        | 31.0834                            | 186.062                  | 235.869                    | 331.545                           | -211.788                  | 331.545                                | 472.098                             | 472.098                                  |
| 9               | 4.71421      | 2324.69        | -34.3143                           | А                | 36                        | 31.0834                            | 198.613                  | 251.78                     | 357.937                           | -178.732                  | 357.937                                | 493.494                             | 493.494                                  |
| 10              | 4.71421      | 2277.89        | -31.6486                           | А                | 36                        | 31.0834                            | 199.781                  | 253.261                    | 360.394                           | -148.912                  | 360.394                                | 483.534                             | 483.534                                  |
| 11              | 4.71421      | 2201.48        | -29.0574                           | А                | 36                        | 31.0834                            | 198.237                  | 251.303                    | 357.145                           | -122.045                  | 357.145                                | 467.29                              | 467.29                                   |
| 12              | 5.07357      | 2248.54        | -26.4359                           | Strato 1         | 4                         | 32.0066                            | 178.122                  | 225.803                    | 354.87                            | -97.1562                  | 354.87                                 | 443.429                             | 443.429                                  |
| 13              | 5.07357      | 2093.25        | -23.7785                           | Strato 1         | 4                         | 32.0066                            | 169.792                  | 215.243                    | 337.974                           | -74.1756                  | 337.974                                | 412.785                             | 412.785                                  |
| 14              | 5.07357      | 2012.34        | -21.1745                           | Strato 1         | 4                         | 32.0066                            | 166.92                   | 211.603                    | 332.15                            | -53.8982                  | 332.15                                 | 396.809                             | 396.809                                  |
| 15              | 5.07357      | 2044.04        | -18.6157                           | Strato 1         | 4                         | 32.0066                            | 173.12                   | 219.463                    | 344.724                           | -36.1943                  | 344.724                                | 403.039                             | 403.039                                  |
| 16              | 5.07357      | 1815.13        | -16.0949                           | Strato 1         | 4                         | 32.0066                            | 157.24                   | 199.331                    | 312.515                           | -20.8241                  | 312.515                                | 357.885                             | 357.885                                  |
| 17              | 5.07357      | 1543.93        | -13.6058                           | Strato 1         | 4                         | 32.0066                            | 136.901                  | 173.548                    | 271.265                           | -8.40643                  | 271.265                                | 304.4                               | 304.4                                    |
| 18              | 5.07357      | 1245.89        | -11.1426                           | Strato 1         | 4                         | 32.0066                            | 112.479                  | 142.589                    | 223.471                           | 1.73891                   | 221.732                                | 245.626                             | 243.887                                  |
| 19              | 5.07357      | 917.672        | -8.70019                           | Strato 1         | 4                         | 32.0066                            | 81.6512                  | 103.508                    | 168.413                           | 9.20625                   | 159.206                                | 180.907                             | 171.701                                  |
| 20              | 5.07357      | 554.62         | -6.27361                           | Strato 1         | 4                         | 32.0066                            | 47.7257                  | 60.5014                    | 104.083                           | 13.685                    | 90.3982                                | 109.33                              | 95.645                                   |
| 21              | 5.33431      | 333.634        | -3.79644                           | Strato 2         | 0                         | 33.8726                            | 24.4139                  | 30.9492                    | 60.9293                           | 14.8245                   | 46.1048                                | 62.5494                             | 47.7249                                  |
| 22              | 5.33431      | 327.401        | -1.26439                           | Strato 2         | 0                         | 33.8726                            | 25.2397                  | 31.9961                    | 60.8208                           | 13.1564                   | 47.6644                                | 61.3778                             | 48.2214                                  |
| 23              | 5.33431      | 89.3758        | 1.26518                            | Strato 2         | 0                         | 33.8726                            | 4.18249                  | 5.3021                     | 16.847                            | 8.94852                   | 7.8985                                 | 16.7546                             | 7.80613                                  |
| 24              | 5.33431      | 50.5424        | 3.79724                            | Strato 2         | 0                         | 33.8726                            | 1.84581                  | 2.33992                    | 9.59712                           | 6.11136                   | 3.48576                                | 9.47461                             | 3.36325                                  |
| 25              | 0.921028     | 3.86547        | 5.28374                            | Strato 1         | 4                         | 32.0066                            | 3.50125                  | 4.43849                    | 4.51982                           | 3.81826                   | 0.701563                               | 4.19602                             | 0.377765                                 |
| Τ               | Love         |                |                                    |                  |                           |                                    |                          |                            |                                   |                           |                                        |                                     |                                          |

#### **Interslice Data**

#### Global Minimum Query (bishop simplified) - Safety Factor: 1.26769

|   | Slice Number | X coordinate [m] | Y coordinate - Bottom<br>[m] | Normal<br>Force [kN] |   | e Shear Force<br>[kN] | e Force<br>Angle [deg] |
|---|--------------|------------------|------------------------------|----------------------|---|-----------------------|------------------------|
| 1 |              | 500.048          | 684.076                      | 0                    | 0 | 0                     |                        |
| 2 |              | 504.762          | 675.5                        | -2.36684             | 0 | 0                     |                        |
| 3 |              | 509.477          | 668.285                      | 415.476              | 0 | 0                     |                        |

|    | Partecipazioni | DETAILPLANUNG / PRO                                                | GETTO DI DETTAGLIO                                    |               |                  |
|----|----------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------|------------------|
|    | Italia         | Nachweis der Standfestigkeit u<br>Verifica di stabilità e assestam | IndSetzungsberechnung Hinterrigg<br>enti Hinterrigger | ger/          | SWS              |
|    | Ghella         | Project                                                            | Document ID<br>KTB_B0130_51058                        | Version<br>00 | Technical report |
| 4  | 514.191        | 662.042                                                            | 937.092                                               | 0             | 0                |
| 5  | 518.905        | 656.548                                                            | 1474.52                                               | 0             | 0                |
| 6  | 523.619        | 651.658                                                            | 1978.02                                               | 0             | 0                |
| 7  | 528.333        | 647.276                                                            | 2416.99                                               | 0             | 0                |
| 8  | 533.048        | 643.331                                                            | 2773.66                                               | 0             | 0                |
| 9  | 537.762        | 639.77                                                             | 3079.6                                                | 0             | 0                |
| 10 | 542.476        | 636.552                                                            | 3297.53                                               | 0             | 0                |
| 11 | 547.19         | 633.647                                                            | 3405.49                                               | 0             | 0                |
| 12 | 551.905        | 631.027                                                            | 3408.99                                               | 0             | 0                |
| 13 | 556.978        | 628.505                                                            | 3402.91                                               | 0             | 0                |
| 14 | 567.125        | 626.209                                                            | 3299.34                                               | 0             | 0                |
| 16 | 572.199        | 622.595                                                            | 2820.75                                               | 0             | 0                |
| 17 | 577.272        | 621.131                                                            | 2482.66                                               | 0             | 0                |
| 18 | 582.346        | 619.903                                                            | 2123.09                                               | 0             | 0                |
| 19 | 587.42         | 618.904                                                            | 1777.29                                               | 0             | 0                |
| 20 | 592.493        | 618.128                                                            | 1494.92                                               | 0             | 0                |
| 21 | 597.567        | 617.57                                                             | 1311.49                                               | 0             | 0                |
| 22 | 602.901        | 617.216                                                            | 1203.18                                               | 0             | 0                |
| 23 | 608.235        | 617.098                                                            | 1076.08                                               | 0             | 0                |
| 24 | 613.57         | 617.216                                                            | 1051.7                                                | 0             | 0                |
| 25 | 618.904        | 617.57                                                             | 1038.02                                               | 0             | 0                |
| 26 | 619.825        | 617.655                                                            | 0.583539                                              | 0             | 0                |

# **Discharge Sections**

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO<br>Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |                      | SWS              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>Ghella</b>            | Project                                                                                                                                                        | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |

# **Entity Information**

#### <u>Piezoline</u>

| X       | Y       |
|---------|---------|
| 163.025 | 621.971 |
| 164.121 | 621.968 |
| 167.4   | 621.955 |
| 168.585 | 621.948 |
| 169.792 | 621.939 |
| 174.817 | 621.907 |
| 179.598 | 621.874 |
| 187.565 | 621.813 |
| 193.079 | 621.771 |
| 203.22  | 621.687 |
| 208.565 | 621.641 |
| 218.878 | 621.547 |
| 224.032 | 621.494 |
| 234.541 | 621.387 |
| 237.68  | 621.35  |
| 248.438 | 621.23  |
| 251.843 | 621.186 |
| 262.872 | 621.057 |
| 267.429 | 620.996 |
| 278.705 | 620.869 |
| 283.016 | 620.813 |

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO<br>Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |               | SWS              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------------|
| <b>J</b> Ghella          | Project                                                                                                                                                        | Document ID<br>KTB_B0130_51058 | Version<br>00 | Technical report |
| 294.515                  |                                                                                                                                                                | 620.7                          |               |                  |
| 297.956                  |                                                                                                                                                                | 620.663                        |               |                  |
| 300.088                  |                                                                                                                                                                | 620.644                        |               |                  |
| 309.988                  |                                                                                                                                                                | 620.564                        |               |                  |
| 311.412                  |                                                                                                                                                                | 620.552                        |               |                  |
| 312.574                  |                                                                                                                                                                | 620.543                        |               |                  |
| 320.66                   |                                                                                                                                                                | 620.493                        |               |                  |
| 321.93                   |                                                                                                                                                                | 620.484                        |               |                  |
| 324.162                  |                                                                                                                                                                | 620.48                         |               |                  |
| 332.294                  |                                                                                                                                                                | 620.446                        |               |                  |
| 335.582                  |                                                                                                                                                                | 620.44                         |               |                  |
| 346.108                  |                                                                                                                                                                | 620.405                        |               |                  |
| 349.056                  |                                                                                                                                                                | 620.399                        |               |                  |
| 358.406                  |                                                                                                                                                                | 620.372                        |               |                  |
| 359.511                  |                                                                                                                                                                | 620.37                         |               |                  |
| 361.71                   |                                                                                                                                                                | 620.365                        |               |                  |
| 367.212                  |                                                                                                                                                                | 620.35                         |               |                  |
| 369.713                  |                                                                                                                                                                | 620.344                        |               |                  |
| 374.787                  |                                                                                                                                                                | 620.33                         |               |                  |
| I                        |                                                                                                                                                                |                                |               |                  |

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO<br>Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |                      | SWS              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>Ghella</b> Project    |                                                                                                                                                                | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |

377.106

620.325

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                  |                                                                     |                      | 01.10            |
|-----------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------|------------------|
| Italia          | Nachweis der Standfesti<br>Verifica di stabilità e ass | gkeit undSetzungsberechnung Hinterrigger/<br>estamenti Hinterrigger |                      | <b>SWS</b>       |
| <b>U</b> Ghella | Project                                                | Document ID<br>KTB_B0130_51058                                      | Version<br><b>00</b> | Technical report |
| 384.767         |                                                        | 620.306                                                             |                      |                  |
| 388 053         |                                                        | 620 299                                                             |                      |                  |
| 398 998         |                                                        | 620.273                                                             |                      |                  |
| 402 823         |                                                        | 620.265                                                             |                      |                  |
| 416 138         |                                                        | 620.233                                                             |                      |                  |
| 410.150         |                                                        | 620.235                                                             |                      |                  |
| 419.999         |                                                        | 620.225                                                             |                      |                  |
| 430.865         |                                                        | 620.199                                                             |                      |                  |
| 434.12          |                                                        | 620.192                                                             |                      |                  |
| 442.732         |                                                        | 620.171                                                             |                      |                  |
| 445.583         |                                                        | 620.165                                                             |                      |                  |
| 453.138         |                                                        | 620.147                                                             |                      |                  |
| 455.841         |                                                        | 620.142                                                             |                      |                  |
| 463.444         |                                                        | 620.123                                                             |                      |                  |
| 466.331         |                                                        | 620.117                                                             |                      |                  |
| 475.099         |                                                        | 620.094                                                             |                      |                  |
| 478.57          |                                                        | 620.086                                                             |                      |                  |
| 487.442         |                                                        | 620.06                                                              |                      |                  |
| 489.746         |                                                        | 620.055                                                             |                      |                  |
| 491.032         |                                                        | 620.051                                                             |                      |                  |
| 494.918         |                                                        | 620.038                                                             |                      |                  |
| 499.88          |                                                        | 620.022                                                             |                      |                  |
| 504.626         |                                                        | 620.004                                                             |                      |                  |
| 508.043         |                                                        | 619.992                                                             |                      |                  |
| 510.108         |                                                        | 619.985                                                             |                      |                  |
| 518.403         |                                                        | 619.952                                                             |                      |                  |
| 520.729         |                                                        | 619.944                                                             |                      |                  |

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                  |                                                                     |                      | 01.10            |
|-----------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------|------------------|
| Italia          | Nachweis der Standfesti<br>Verifica di stabilità e ass | gkeit undSetzungsberechnung Hinterrigger/<br>estamenti Hinterrigger | ,                    | SWS              |
| <b>U</b> Ghella | Project                                                | Document ID<br>KTB_B0130_51058                                      | Version<br><b>00</b> | Technical report |
| 522.191         |                                                        | 619.939                                                             |                      |                  |
| 533 914         |                                                        | 619 887                                                             |                      |                  |
| 535.336         |                                                        | 619.882                                                             |                      |                  |
| 545.371         |                                                        | 619.831                                                             |                      |                  |
| 546.63          |                                                        | 619.825                                                             |                      |                  |
| 548.454         |                                                        | 619.817                                                             |                      |                  |
| 554.272         |                                                        | 619.784                                                             |                      |                  |
| 555.777         |                                                        | 619.777                                                             |                      |                  |
| 557.839         |                                                        | 619.768                                                             |                      |                  |
| 562.383         |                                                        | 619.742                                                             |                      |                  |
| 564.654         |                                                        | 619.734                                                             |                      |                  |
| 567.481         |                                                        | 619.718                                                             |                      |                  |
| 569.342         |                                                        | 619.711                                                             |                      |                  |
| 570.554         |                                                        | 619.711                                                             |                      |                  |
| 572.832         |                                                        | 619.701                                                             |                      |                  |
| 573.313         |                                                        | 619.698                                                             |                      |                  |
| 575.337         |                                                        | 619.689                                                             |                      |                  |
| 575.736         |                                                        | 619.686                                                             |                      |                  |
| 577.634         |                                                        | 619.666                                                             |                      |                  |
| 580.156         |                                                        | 619.636                                                             |                      |                  |
| 581.517         |                                                        | 619.627                                                             |                      |                  |
| 583.24          |                                                        | 619.614                                                             |                      |                  |
| 586.799         |                                                        | 619.556                                                             |                      |                  |
| 588.532         |                                                        | 619.54                                                              |                      |                  |
| 592.266         |                                                        | 619.437                                                             |                      |                  |
| 593.762         |                                                        | 619.412                                                             |                      |                  |

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO         Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/         Verifica di stabilità e assestamenti Hinterrigger |                                |                      |                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>Ghella</b>            | Project                                                                                                                                                                  | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |
| 596.796                  |                                                                                                                                                                          | 619.247                        |                      |                  |
| 598.105                  |                                                                                                                                                                          | 619.112                        |                      |                  |
| 599.94                   |                                                                                                                                                                          | 618.979                        |                      |                  |
| 601.69                   |                                                                                                                                                                          | 618.806                        |                      |                  |
| 603.317                  |                                                                                                                                                                          | 618.678                        |                      |                  |
| 604.289                  |                                                                                                                                                                          | 618.602                        |                      |                  |
| 605.34                   |                                                                                                                                                                          | 618.512                        |                      |                  |
| 606.08                   |                                                                                                                                                                          | 618.457                        |                      |                  |
| 606.778                  |                                                                                                                                                                          | 618.392                        |                      |                  |
| 608.296                  |                                                                                                                                                                          | 618.168                        |                      |                  |
| 608.828                  |                                                                                                                                                                          | 618                            |                      |                  |
| 608.828                  |                                                                                                                                                                          | 618                            |                      |                  |
| 608.828                  |                                                                                                                                                                          | 618                            |                      |                  |

#### External Boundary

| x       | Y       |
|---------|---------|
| 588.892 | 628.204 |
| 581.208 | 634.076 |
| 567.853 | 644.076 |
| 563.551 | 644.076 |
| 550.213 | 654.076 |
| 536.875 | 664.076 |
| 532.573 | 664.076 |
| 519.234 | 674.076 |
| 511.425 | 679.931 |
| 505.896 | 684.076 |
|         |         |

| Partecipazioni | DETAILPLANUNG / PROGETTO DI DETTAGLIO                                                                                 |                                |               | 01.10            |
|----------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------------|
| Italia         | Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |               | SWS              |
| <b>Ghella</b>  | Project                                                                                                               | Document ID<br>KTB_B0130_51058 | Version<br>00 | Technical report |
| 498.893        |                                                                                                                       | 684.076                        |               | I                |
| 493.275        |                                                                                                                       | 688.288                        |               |                  |
| 484.57         |                                                                                                                       | 694.076                        |               |                  |
| 484.03         |                                                                                                                       | 694.076                        |               |                  |
| 477.495        |                                                                                                                       | 694.076                        |               |                  |
| 474.061        |                                                                                                                       | 694.076                        |               |                  |
| 467.018        |                                                                                                                       | 694.076                        |               |                  |
| 464.092        |                                                                                                                       | 694.076                        |               |                  |
| 456.542        |                                                                                                                       | 694.076                        |               |                  |
| 454.123        |                                                                                                                       | 694.076                        |               |                  |
| 451.374        |                                                                                                                       | 694.076                        |               |                  |
| 450.84         |                                                                                                                       | 694.076                        |               |                  |
| 445.639        |                                                                                                                       | 694.076                        |               |                  |
| 444.144        |                                                                                                                       | 694.076                        |               |                  |
| 436.171        |                                                                                                                       | 694.076                        |               |                  |
| 434.145        |                                                                                                                       | 694.076                        |               |                  |
| 431.973        |                                                                                                                       | 694.076                        |               |                  |
| 424.168        |                                                                                                                       | 694.076                        |               |                  |
| 421.208        |                                                                                                                       | 694.076                        |               |                  |
| 414.258        |                                                                                                                       | 694.076                        |               |                  |
| 409.885        |                                                                                                                       | 694.076                        |               |                  |
| 404.452        |                                                                                                                       | 694.076                        |               |                  |
| 398.017        |                                                                                                                       | 694.076                        |               |                  |
| 394.778        |                                                                                                                       | 694.076                        |               |                  |
| 385.252        |                                                                                                                       | 694.076                        |               |                  |
| I              |                                                                                                                       |                                |               |                  |

| Partecipazioni | DETAILPLANUNG / I                                        | PROGETTO DI DETTAGLIO                                                  |               |                  |
|----------------|----------------------------------------------------------|------------------------------------------------------------------------|---------------|------------------|
| Italia         | Nachweis der Standfestig<br>Verifica di stabilità e asse | tigkeit undSetzungsberechnung Hinterrigger/<br>sestamenti Hinterrigger |               | SWS              |
| <b>Ghella</b>  | Project                                                  | Document ID<br>KTB_B0130_51058                                         | Version<br>00 | Technical report |

384.194

694.076

| Partecipazioni<br>Italia | DETAILPLANUNG /<br>Nachweis der Standfesti<br>Verifica di stabilità e asso | PROGETTO DI DETTAGLIO<br>igkeit undSetzungsberechnung Hinterrigger/<br>æstamenti Hinterrigger |                      | SWS              |
|--------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|------------------|
| <b>O</b> Ghella          | Project                                                                    | Document ID<br>KTB_B0130_51058                                                                | Version<br><b>00</b> | Technical report |

376.09

694.076

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                   |                                                                     |                      | 01.10            |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------|------------------|
| Italia          | Nachweis der Standfesti<br>Verifica di stabilità e asse | gkeit undSetzungsberechnung Hinterrigger/<br>estamenti Hinterrigger |                      | <b>2M2</b>       |
| <b>O</b> Ghella | Project                                                 | Document ID<br>KTB_B0130_51058                                      | Version<br><b>00</b> | Technical report |
|                 |                                                         |                                                                     |                      |                  |
| 367.005         |                                                         | 694.076                                                             |                      |                  |
| 356.117         |                                                         | 697.977                                                             |                      |                  |
| 348.554         |                                                         | 700.954                                                             |                      |                  |
| 345.124         |                                                         | 702.316                                                             |                      |                  |
| 341.027         |                                                         | 704.076                                                             |                      |                  |
| 333.717         |                                                         | 704.076                                                             |                      |                  |
| 331.768         |                                                         | 704.076                                                             |                      |                  |
| 323.795         |                                                         | 704.076                                                             |                      |                  |
| 317.881         |                                                         | 699.848                                                             |                      |                  |
| 309.815         |                                                         | 694.076                                                             |                      |                  |
| 295.835         |                                                         | 684.076                                                             |                      |                  |
| 288.061         |                                                         | 678.543                                                             |                      |                  |
| 285.773         |                                                         | 676.896                                                             |                      |                  |
| 281.858         |                                                         | 674.076                                                             |                      |                  |
| 277.235         |                                                         | 670.745                                                             |                      |                  |
| 273.26          |                                                         | 667.882                                                             |                      |                  |
| 268.038         |                                                         | 671.492                                                             |                      |                  |
| 261.605         |                                                         | 673.139                                                             |                      |                  |
| 254.783         |                                                         | 680                                                                 |                      |                  |
| 248.92          |                                                         | 683.267                                                             |                      |                  |
| 240.758         |                                                         | 686                                                                 |                      |                  |
| 227.706         |                                                         | 688                                                                 |                      |                  |
| 225.009         |                                                         | 690                                                                 |                      |                  |
| 219.437         |                                                         | 690                                                                 |                      |                  |
| 205.281         |                                                         | 694                                                                 |                      |                  |
| 199.776         |                                                         | 694                                                                 |                      |                  |

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                  |                                                                      |                      |                  |
|-----------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------|------------------|
| Italia          | Nachweis der Standfesti<br>Verifica di stabilità e ass | igkeit undSetzungsberechnung Hinterrigger/<br>estamenti Hinterrigger | 1                    | SWS              |
| <b>U</b> Ghella | Project                                                | Document ID<br>KTB_B0130_51058                                       | Version<br><b>00</b> | Technical report |
| 198.375         |                                                        | 693 175                                                              |                      |                  |
| 102.974         |                                                        | 604                                                                  |                      |                  |
| 193.874         |                                                        | 094                                                                  |                      |                  |
| 190.253         |                                                        | 696                                                                  |                      |                  |
| 177.678         |                                                        | 698                                                                  |                      |                  |
| 163.025         |                                                        | 700                                                                  |                      |                  |
| 163.025         |                                                        | 629.5                                                                |                      |                  |
| 163.025         |                                                        | 617.567                                                              |                      |                  |
| 163.025         |                                                        | 614.567                                                              |                      |                  |
| 163.025         |                                                        | 607.567                                                              |                      |                  |
| 163.025         |                                                        | 595.567                                                              |                      |                  |
| 163.025         |                                                        | 520.734                                                              |                      |                  |
| 800             |                                                        | 520.734                                                              |                      |                  |
| 800             |                                                        | 595.567                                                              |                      |                  |
| 800             |                                                        | 607.567                                                              |                      |                  |
| 800             |                                                        | 614.567                                                              |                      |                  |
| 800             |                                                        | 617.571                                                              |                      |                  |
| 800             |                                                        | 669.745                                                              |                      |                  |
| 788.562         |                                                        | 668.248                                                              |                      |                  |
| 779.808         |                                                        | 667.509                                                              |                      |                  |
| 774.305         |                                                        | 666                                                                  |                      |                  |
| 762.733         |                                                        | 662                                                                  |                      |                  |
| 748.786         |                                                        | 657.179                                                              |                      |                  |
| 735.074         |                                                        | 652.44                                                               |                      |                  |
| 728.921         |                                                        | 650                                                                  |                      |                  |
| 725.517         |                                                        | 648                                                                  |                      |                  |
| 711.827         |                                                        | 644                                                                  |                      |                  |

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO<br>Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                |               | SWS              |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------------|--|
| <b>J</b> Ghella          | Project                                                                                                                                                        | Document ID<br>KTB_B0130_51058 | Version<br>00 | Technical report |  |
| 693.082                  |                                                                                                                                                                | 638                            |               |                  |  |
| 673.746                  |                                                                                                                                                                | 632                            |               |                  |  |
| 659.261                  |                                                                                                                                                                | 627.488                        |               |                  |  |
| 647.965                  |                                                                                                                                                                | 624                            |               |                  |  |
| 636.524                  |                                                                                                                                                                | 620                            |               |                  |  |
| 634.642                  |                                                                                                                                                                | 618                            |               |                  |  |
| 631.651                  |                                                                                                                                                                | 617.752                        |               |                  |  |
| 618.822                  |                                                                                                                                                                | 617.647                        |               |                  |  |
| 608.828                  |                                                                                                                                                                | 618                            |               |                  |  |
| 605.988                  |                                                                                                                                                                | 620.817                        |               |                  |  |
| 605.018                  |                                                                                                                                                                | 620.598                        |               |                  |  |
| 598.661                  |                                                                                                                                                                | 620.369                        |               |                  |  |
| 595.397                  |                                                                                                                                                                | 622.986                        |               |                  |  |

#### Material Boundary

| x       | Ŷ       |
|---------|---------|
| 273.26  | 667.882 |
| 277.694 | 664.076 |
| 283.661 | 659.626 |
| 287.779 | 656.454 |
| 290.54  | 654.076 |
| 294.378 | 650.77  |
| 301.747 | 644.076 |
| 311.758 | 636.546 |
| 315.18  | 634.076 |
| 321.519 | 629.5   |
|         |         |

| Partecipazioni<br>Italia | DETAILPLANUNG / PROGETTO DI DETTAGLIO         Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/         Verifica di stabilità e assestamenti Hinterrigger |                                |                      | SWS              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| <b>Ghella</b>            | Project                                                                                                                                                                  | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |
| 244 265                  |                                                                                                                                                                          | 620.46                         |                      | 1                |
| 544.205                  |                                                                                                                                                                          | 629.40                         |                      |                  |
| 368.64                   |                                                                                                                                                                          | 629                            |                      |                  |
| 372.019                  |                                                                                                                                                                          | 628.807                        |                      |                  |
| 392.905                  |                                                                                                                                                                          | 628.53                         |                      |                  |
| 423.552                  |                                                                                                                                                                          | 627.926                        |                      |                  |
| 447.369                  |                                                                                                                                                                          | 627.505                        |                      |                  |
| 457.524                  |                                                                                                                                                                          | 626.5                          |                      |                  |
| 490.082                  |                                                                                                                                                                          | 627.983                        |                      |                  |
| 500.667                  |                                                                                                                                                                          | 630                            |                      |                  |
| 505.184                  |                                                                                                                                                                          | 631                            |                      |                  |
| 522.22                   |                                                                                                                                                                          | 631.076                        |                      |                  |
| 539.217                  |                                                                                                                                                                          | 631.5                          |                      |                  |
| 552.639                  |                                                                                                                                                                          | 631                            |                      |                  |
| 557.116                  |                                                                                                                                                                          | 629.808                        |                      |                  |
| 566.019                  |                                                                                                                                                                          | 626.124                        |                      |                  |
| 569.589                  |                                                                                                                                                                          | 624.5                          |                      |                  |
| 575.421                  |                                                                                                                                                                          | 621.7                          |                      |                  |
| 578.157                  |                                                                                                                                                                          | 622.908                        |                      |                  |
| 586.257                  |                                                                                                                                                                          | 623                            |                      |                  |
| 595.397                  |                                                                                                                                                                          | 622.986                        |                      |                  |

#### Material Boundary

| ×       | Ŷ       |
|---------|---------|
| 163.025 | 617.567 |
| 634.642 | 617.57  |
| 800     | 617.571 |

| Partecipazioni  | DETAILPLANUNG / PROGETTO DI DETTAGLIO                                                                                 |                                |                      | CMC.             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|
| Italia          | Nachweis der Standfestigkeit undSetzungsberechnung Hinterrigger/<br>Verifica di stabilità e assestamenti Hinterrigger |                                | <b>JMJ</b>           |                  |
| <b>U</b> Ghella | Project                                                                                                               | Document ID<br>KTB_B0130_51058 | Version<br><b>00</b> | Technical report |

#### **Material Boundary**

|       | x  |         | Y |  |
|-------|----|---------|---|--|
| 163.0 | 25 | 614.567 |   |  |
| 800   |    | 614.567 |   |  |

#### **Material Boundary**

|    | x     | Y       |
|----|-------|---------|
| 16 | 3.025 | 607.567 |
| 80 | 0     | 607.567 |

#### **Material Boundary**

| x       | Y       |
|---------|---------|
| 163.025 | 595.567 |
| 800     | 595.567 |

#### **Material Boundary**

| X       | Y     |
|---------|-------|
| 163.025 | 629.5 |
| 321.519 | 629.5 |

#### **Material Boundary**

| x       | Y       |
|---------|---------|
| 301.747 | 644.076 |
| 563.551 | 644.076 |

#### Material Boundary

|         | X |         | Y |
|---------|---|---------|---|
| 277.694 |   | 664.076 |   |
| 532.573 |   | 664.076 |   |
|         |   |         |   |

# Material Boundary X Y

| Partecipazioni<br>Italia | DETAILPLANUNG / P<br>Nachweis der Standfestigl<br>Verifica di stabilità e asses | /                              | SWS           |                  |
|--------------------------|---------------------------------------------------------------------------------|--------------------------------|---------------|------------------|
| <b>U</b> Ghella          | Project                                                                         | Document ID<br>KTB_B0130_51058 | Version<br>00 | Technical report |
| 295.835                  |                                                                                 | 684.076                        |               |                  |
| 498.893                  |                                                                                 | 684.076                        |               |                  |
| <u>Material Bounda</u>   | ary                                                                             |                                |               |                  |
|                          | x                                                                               |                                | Y             |                  |
| 309.815                  |                                                                                 | 694.076                        |               |                  |
| 367.005                  |                                                                                 | 694.076                        |               |                  |
| Material Bounda          | ary                                                                             |                                |               |                  |
|                          | X                                                                               |                                | Ŷ             |                  |
| 315.18                   |                                                                                 | 634.076                        |               |                  |
| 581.208                  |                                                                                 | 634.076                        |               |                  |
| <u>Material Bounda</u>   | ary                                                                             |                                |               |                  |
|                          | x                                                                               |                                | Y             |                  |
| 290.54                   |                                                                                 | 654.076                        |               |                  |
| 550.213                  |                                                                                 | 654.076                        |               |                  |
| Material Bounda          | ary                                                                             |                                |               |                  |
|                          | X                                                                               |                                | Y             |                  |
| 281.858                  |                                                                                 | 674.076                        |               |                  |
| 519.234                  |                                                                                 | 674.076                        |               |                  |
| Material Bounda          | ary                                                                             |                                |               |                  |
|                          | x                                                                               |                                | Y             |                  |
| 634.642                  |                                                                                 | 617.57                         |               |                  |
| 634.642                  |                                                                                 | 618                            |               |                  |