AUTONOME PROVINZ BOZEN PROVINCIA AUTONOMA DI BOLZANO GEMEINDE SCHNALS COMUNE DI SENALES

PROJEKT BEWIRTSCHAFTUNG NIEDERSCHLAGSWÄSSER PROGETTO TUTELA ACQUE METEORICHE

Projekt Progetto

ALMDORF SCHNALS

Bauherr Committente

ATHESIA DRUCK GMBH LAUBEN 41 39100 BOZEN

Inhalt Contenuto

TECHNISCHER B	ERICHT			R01
Gezeichnt Elaborato	Datum - Data	Projekt Nr No. Progetto	Datei Name - Nome File	Maßstab - Scala
Per. Ind. Spitaler Thomas	07/12/2020	10120	07.12.2020.dwg	1
Geprüft Approvato	Var. Datum - Var. Data			1
Per. Ind. Marco Miori	1			

Projektant Progettista Progettista

MERAN, GAMPENSTRASSE 99/D TEL. 0473-232320 MERANO, VIA PALADE 99/D BRUNECK, PETER-MITTERHOFER-STRASSE 12 TEL. 0474-554050 BRUNICO, VIA PETER-MITTERHOFER 12 E-MAIL: THERMOSTUDIO.GMBH@PEC.IT - MERAN@THERMOSTUDIO.NET - BRUNECK@THERMOSTUDIO.NET

....

Unterschriften	Firme

BERICHT

1. Anzuwendende Norm

Dekret des Landeshauptmanns vom 21. Jänner 2008, Nr. 6 Durchführungsverordnung zum Landesgesetz vom 18. Juni 2002, Nr. 8, betreffend "Bestimmungen über die Gewässer" im Bereich Gewässerschutz

2. Allgemeine Beschreibung

In Kurzras im Schnalstal wird ein neuer Hotelkomplex errichtet.

Dieser neue Komplex wird an das örtliche Abwassernetz angeschlossen. Der errechnete Anschlusswert Abwasser beträgt max. 12,8 l/s.

Die Klassifizierung der Abwasser sind:

- Hotelbetrieb Häusliche Abwasser
- Garage Häusliche Abwasser über Ölabscheider
- Hotelküche Häusliche Abwasser über Fettabscheider

Die anfallenden Niederschlagswasser hingegen können wie folgt klassifiziert werden:

- "Nicht verunreinigte Niederschlagswässer" von den Dächern, Innenhöfe, Terrassen, Fußwege
- "Schwach verunreinigte Niederschlagswässer" private Zufahrtsstraße und Parkplatz

3. Bewirtschaftung der Niederschlagswässer

Die Bodenversiegelung bei diesem Komplex wird auf ein Minimum beschränkt, auch weil sich der Komplex in der Berglandschaft integrieren soll.

Ein Großteil der überbauten Fläche ist unterirdisch mit einer oberflächlichen Begrünung oder Regendurchlässiger Befestigung wie Rasengitter, Schotterwege ecc. Dieses anfallende Regenwasser dringt in der oberflächlichen Begrünung ein (min 90 cm) und wird um das Gebäude direkt dem Untergrund zugeführt.

Die Niederschlagswässer der Dachflächen werden über Sickerschächte oder Rigolen dem Untergrund zugeführt.

Zur Bemessung dieser Systeme werden die Daten über die Niederschlagsmengen von Amt für Meteorologie und Lawinenwarnung Messstation Vernagt im Schnalstal herangezogen. In den letzten 30 Jahren war die höchste Niederschlagsmenge an einem Tag in 24 Stunden 68 mm (30/10/2018).

Die höchste je gemessene Menge an Niederschlag in Südtirol ist hingegen 124 mm in 6 Stunden vom 05.08.2015 in St. Martin in Passeiertal.

Laut Geologischem Gutachten ist die Durchlässigkeit des Bodens wie folgt:

2.4.3 HYDROGEOLOGISCHE VERHÄLTNISSE IM BAUAREAL

DURCHLÄSSIGKEIT

Die Durchlässigkeit der untergrundaufbauenden Lockergesteine (LE 1) kann in Anbetracht der Komgrößenzusammensetzung und des Verdichtungsgrades nach DIN 18130-1 wie folgt angegeben werden.

Die Durchlässigkeit des Festgesteins (LE 2) wird nach Wittke (1984) angegeben:

Einheit Unità	Durchlässigkelt Permeabilità	k-Wert (Schätzwert) valore k (stima)
LE 1	durchlässig bis schwach durchlässig da permeabile a poco permeabile	10-5 -10-6 [m/s]
LE 2	schwach durchlässig bis sehr schwach durchlässig da poco permeabile a molto poco permeabile	10 ⁻⁷ -10 ⁻⁹ [m/s]

Tabelle 1: Durchlässigkeitsbeiwerte der lithologischen Einheiten im Bauareat

4. Bemessung der Sickerschächte oder Rigolen

Die zu Grunde liegenden Flächen sind:

Bez.	Beschreibung Fläche	m²	Klassifizierung
Α	Dach	320	NV
В	Dach	448	NV
С	Dach	326	NV
D	Dach	312	NV
E	Dach	548	NV
F	Dach	350	NV
G	Dach	2068	NV
Н	Verkehrsflächen privat	835	SV

Angenommene maximaler Niederschlag 222 l/s/ha = 20 mm für 15 min

Dachflächen A + B + C - Sickerschacht 1

			I/s/ha	t-s			
1094,00	m²	$\varphi = 0.90$	222,00	900	Q =	19,67	m³
0,00	m²	$\varphi = 0.85$	222,00	900	Q =	0,00	m³
0,00	m²	$\varphi = 0.70$	222,00	900	Q =	0,00	m³
0,00	m²	$\varphi = 0.50$	222,00	900	Q =	0,00	m³
0,00	m²	$\varphi = 0.17$	222,00	900	Q =	0,00	m³
1094,00	m²			;	- Summe	19,67	m³
	0,00 0,00 0,00 0,00	0,00 m ² 0,00 m ² 0,00 m ² 0,00 m ²	$\begin{array}{ccccc} & 0,00 & m^2 & \phi & = 0,85 \\ & 0,00 & m^2 & \phi & = 0,70 \\ & 0,00 & m^2 & \phi & = 0,50 \\ & 0,00 & m^2 & \phi & = 0,17 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Volumen Sickerschacht 20 m³

<u>Dachflächen D + E + F - Sickerschacht 2</u>

BEMESSUNG								
		_		I/s/ha	t - s			
Dach normal	1210,00	m²	$\varphi = 0.90$	222,00	900	Q =	21,76	m³
Versiegelte Flächen Asfalt, Steinzeug, ecc.	0,00	m²	$\varphi = 0.85$	222,00	900	Q =	0,00	m³
Teilweise versiegelte Flächen wie Pflastersteine ecc.	0,00	m²	$\varphi = 0.70$	222,00	900	Q =	0,00	m³
Wasserdurchlässige beschichtung Rasengitter ecc.	0,00	m²	$\varphi = 0.50$	222,00	900	Q =	0,00	m³
Rasenflächen, Grünflächen	0,00	m²	$\varphi = 0.17$	222,00	900	Q =	0,00	m³
	1210,00	m²				SUMME	21,76	m³

Volumen Sickerschacht 22 m³

<u>Dachflächen G + Fläche H – Rigole 3</u>

			l/s/ha	t - s			
2068,00	m²	$\varphi = 0.9$	222,00	900	Q =	37,19	m³
835,00	m²	$\varphi = 0.8$	5 222,00	900	Q =	14,18	m³
0,00	m²	$\varphi = 0.7$	222,00	900	Q =	0,00	m³
0,00	m²	$\varphi = 0.5$	222,00	900	Q =	0,00	m³
0,00	m²	$\varphi = 0.1$	7 222,00	900	Q =	0,00	m³
2002.00					- CUMME	E4 27	- m³
	835,00 0,00 0,00	835,00 m ² 0,00 m ² 0,00 m ² 0,00 m ²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Volumen Versickerungsrigole 55 m³

Da die Niederschlagswässer von der Verkehrsfläche und Parkplatz als "schwach Verunreinigt" klassifiziert werden, muss vor der Einleitung in die Rigole ein Abscheider der Klasse II gemäß UNI EN 858 – 1 verbaut werden.

Bemessung Abscheider Klasse II

Berechnung Ölabscheider

Dichte del 2d el Waltenden Leichthussigkeit	0,03	- Kg/uiii
Dichte der zu erwartenden Leichtflüssigkeit	0,85	kg/dm
Die Regenspende i ist von den örtlichen Regendaten abhängig und ist entsprechend der behördlichen Auflagen anzusetzen.		
Regenspende i	222	l/s.ha
Regenauffangflächen (Fahrzeugabstellflächen)		
Projizierte Freifläche A2	219	m²
anfällt		
Regenauffangflächen auf denen nur geringe Mengen an Schmutz durch St	raßenverkehr	
Projizierte Freifläche A1	616	m²

1. REGENWASSER (Qr):

$$(616 \text{ m}^2 + 219 \text{ m}^2) \times 0.0200 \text{ l/s} \times \text{ha} = 16.7 \text{ l/s}$$

$$16.7 \text{ l/s}$$

2. SCHMUTZWASSER VON AUSLAUFVENTILEN (Qs):

Nicht vorhanden

3. ERSCHWERNISSFAKTOR (fx):

Muss laut UNI EN 858 nicht angewendet werden

Es wird ein Mineralölabscheider Nenngröße NS 18 Klasse II eingebaut.

5. Erklärungen

Qr

- Im Sinne des Dekretes des Landeshauptmanns vom 21. Jänner 2008, Nr. 6, Durchführungsverordnung zum Landesgesetz vom 18. Juni 2002, Nr. 8, betreffend «Bestimmungen über die Gewässer» im Bereich Gewässerschutz wird erklärt, dass die Niederschlagsgewässer vom Dach welche in den Sickerschacht eingeleitet werden als "nicht verunreinigte Niederschlagswässer" klassifiziert werden, und keine Materialien wie Kupfer, verzinkte Bleche oder Blei verbaut werden.
- Es wird erklärt, dass für die Niederschlagswasser, die Installation eines Sickerschachts zur Untergrundverrieselung die technisch sinnvollste Lösung ist.
- Die Solen der Sickerschächte sowie der Rigolen befinden sich mindestens 1,5 m über dem Grundwasserspiegel.